Có tồn tại hay không các số hữu tỉ dương a,b sao cho :
\(\sqrt{a}+\sqrt{b}=\sqrt{2}\)
@Akai Haruma ; @Azuki Tsukishima ;....Chỉ giúp em cách giải dạng này với ạ !!! ( chi tiết nhé ạ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Akai HarumaDƯƠNG PHAN KHÁNH DƯƠNGlê thị hương giangNhã DoanhNguyễn Nhật MinhCold Wind
$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học
Giả sử \(x+\sqrt{2}\) hữu tỉ thì \(x=-\sqrt{2}\) do \(\sqrt{2}\) vô tỉ
Do đó \(x\) vô tỉ
Vậy \(x^3+\sqrt{2}\) vô tỉ
Vậy ko tồn tại số thực x tm đề
Hmm cái này ko chắc :))
ko
Có, chẳng hạn \(\sqrt{\dfrac{1}{2}}+\sqrt{\dfrac{1}{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\) (với \(a=b=\dfrac{1}{2}\in Q\))