Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
Mình làm hơi tắt nhé !
a, \(\left(5\sqrt{18}-3\sqrt{18}+4\sqrt{2}\right):\sqrt{2}\)
= \(5\sqrt{18:2}-3\sqrt{18:2}+4\sqrt{2:2}=15-9+4=10\)
b, \(\left(\sqrt{\dfrac{a^2}{d}}+\sqrt{\dfrac{b^2}{d}}-\sqrt{d}\right):\sqrt{d}\)
= \(\left(\sqrt{\dfrac{a^2}{d}}+\sqrt{\dfrac{b^2}{d}}-\sqrt{d}\right).\dfrac{1}{\sqrt{d}}=\dfrac{\sqrt{a^2}}{\sqrt{d}.\sqrt{d}}+\dfrac{\sqrt{b^2}}{\sqrt{d}.\sqrt{d}}-\dfrac{\sqrt{d}}{\sqrt{d}}=\dfrac{a}{d}+\dfrac{b}{d}-1\) = \(\dfrac{a+b}{d}-1\)
Lời giải:
\(\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(a-c)^2}=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2-2(\frac{1}{(a-b)(b-c)}+\frac{1}{(b-c)(c-a)}+\frac{1}{(a-b)(c-a)})\)
\(=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2-2.\frac{c-a+a-b+b-c}{(a-b)(b-c)(c-a)}=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2\)
\(\Rightarrow \sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}}=|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}|\) là số hữu tỷ (đpcm)
ad nhị thưj newton khai triển 2 cái kia ra =="