Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\Delta=b^2-4ac=\left(a+c\right)^2-4ac=\left(a-c\right)^2\)
\(\Rightarrow x_1=\frac{-b+a-c}{2a};x_2=\frac{-b-a+c}{2a}\in Q.\)
$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học
Lớp 9 anh cân tất :
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=\frac{1}{c}\Rightarrow c=\frac{ab}{a+b}\)
\(\Rightarrow\sqrt{a^2+b^2+c^2}=\sqrt{a^2+b^2+\frac{\left(ab\right)^2}{\left(a+b\right)^2}}=\sqrt{\frac{a^2\left(a+b\right)^2+b^2\left(a+b\right)^2+\left(ab\right)^2}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{a^4+2ab^3+3a^2b^2+2a^3b+b^4}{\left(a+b\right)^2}}=\sqrt{\frac{\left(b^2+ab+a^2\right)^2}{\left(a+b\right)}}=\frac{b^2+ab+a^2}{a+b}\)là số hữu tỉ
=> đpcm
Cái dòng cuối mình viết nhầm \(\sqrt{\frac{\left(a^2+ab+b^2\right)^2}{\left(a+b\right)^2}}\) thành \(\sqrt{\frac{\left(a^2+ab+b^2\right)^2}{\left(a+b\right)}}\); sửa cho mk chỗ đó