K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

ai làm đc mk sẽ lấy nhiều nik để cho nhiều like nha

e: BE*BC^2

=BH^2/BA*BC^2

=(BH*BC)^2/BA

=BA^4/BA=BA^3

18 tháng 7 2021

a) Ta có: \(\left(\dfrac{AB}{AC}\right)^2=\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{HC}\)

b) Ta có: \(\left(\dfrac{CA}{AB}\right)^4=\left(\dfrac{CA^2}{AB^2}\right)^2=\left(\dfrac{CH.BC}{BH.BC}\right)^2=\dfrac{CH^2}{BH^2}=\dfrac{CE.CA}{BD.BA}\)

\(=\dfrac{CE}{BD}.\dfrac{CA}{BA}\Rightarrow\left(\dfrac{CA}{AB}\right)^3=\dfrac{CE}{BD}\)

c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)

\(=BD.BA.CE.CA=BD.CE\left(AB.AC\right)=BD.CE.AH.BC\)

\(\Rightarrow BD.CE.BC=AH^3\)

d) Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật

\(\Rightarrow AH=DE\Rightarrow AH^2=DE^2=DH^2+HE^2\)

Ta có: \(3AH^2+BD^2+CE^2=2AH^2+\left(DH^2+BD\right)^2+\left(HE^2+CE^2\right)\)

\(=2.HB.HC+BH^2+CH^2=\left(BH+CH\right)^2=BC^2\)

10 tháng 10 2022

Bạn ơi chỉ thêm cho mik câu b vs ạ

20 tháng 7 2021

A B C H M N

Ta có : \(AB^2=BH.BC\)

\(AC^2=CH.BC\)

Chia vế với vế ta được : 

\(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)

20 tháng 7 2021

Tham khảo:undefinedundefined

11 tháng 10 2023

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔHDB vuông tại D có DK là trung tuyến

nên KH=KB=KD

ΔHEC vuông tại E có EI là trung tuyến

nên EI=IH=IC

\(\widehat{IED}=\widehat{IEH}+\widehat{DEH}\)

\(=\widehat{IHE}+\widehat{DAH}\)

\(=\widehat{HAB}+\widehat{HBA}=90^0\)

=>IE vuông góc ED(1)

\(\widehat{KDE}=\widehat{KDH}+\widehat{EDH}\)

\(=\widehat{KHD}+\widehat{EAH}=\widehat{HAC}+\widehat{HCA}=90^0\)

=>KD vuông góc DE(2)

Từ (1), (2) suy ra DKIE là hình thang vuông

\(S_{DKIE}=\dfrac{1}{2}\left(DK+EI\right)\cdot ED\)

\(=\dfrac{1}{2}\cdot AH\cdot\left(\dfrac{1}{2}HC+\dfrac{1}{2}HB\right)\)

\(=\dfrac{1}{4}\cdot AH\cdot BC\)

=>\(\dfrac{S_{DKIE}}{S_{ABC}}=\dfrac{1}{4}:\dfrac{1}{2}=\dfrac{1}{2}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(BE\cdot BA=BH^2\)

hay \(BE=\dfrac{BH^2}{BA}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(CF\cdot CA=CH^2\)

hay \(CF=\dfrac{CH^2}{CA}\)

Ta có: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{CA}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)

\(=\dfrac{AB^4\cdot AC}{AC^4\cdot AC}=\dfrac{AB^3}{AC^3}\)

 

7 tháng 7 2023

Tại sao BH2 bằng với AB4 thế ạ?

 
17 tháng 6 2023

loading...