Câu 7:Cho tam giác ABC vuông tại A với các đường phân giác trong BM và CN. Chứng minh bất đẳng thức sau: (MC+MA)(NB+NA)/MA.NA>=3+2 căn 2
Câu 8:Cho các số nguyên dương a,b,c sao cho 1/a+1/b=1/c. chứng minh rằng a+b không thể là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhá, ta có BĐT cần chúng minh <=>\(\frac{AC.AB}{AM.AN}\ge3+2\sqrt{2}\)
Áp dụng tính chất của đường phân giác, ta có \(\frac{AM}{AC}=\frac{AB}{AB+BC};\frac{AN}{AB}=\frac{AC}{AC+BC}\Rightarrow\frac{AB.AC}{AM.AN}=\frac{\left(AC+BC\right)\left(AB+BC\right)}{AB.AC}\)
=\(\frac{AB.AC+BC\left(AB+AC\right)+BC^2}{AB.AC}=1+\frac{BC\left(AB+AC\right)+BC^2}{AB.AC}\)
Mà \(BC=\sqrt{BC^2}=\sqrt{AB^2+AC^2}\)
Mà \(AB^2+AC^2\ge2AB.AC\Rightarrow BC\ge\sqrt{2}.\sqrt{AB.AC}\)
Vì \(AB+AC\ge2\sqrt{AB.AC}\Rightarrow BC\left(AB+AC\right)\ge2\sqrt{2}AB.AC\)(1)
Ta có \(BC^2=AB^2+AC^2\ge2AB.AC\)(2)
Từ (1) và (2)
=>\(BC\left(AB+AC\right)+BC^2\ge2AB.AC+2\sqrt{2}AB.AC\)
=>\(\frac{BC\left(AB+AC\right)+BC^2}{AB.AC}\ge2+2\sqrt{2}\Rightarrow\frac{BC\left(AB+AC\right)+BC^2}{AB.AC}+1\ge3+2\sqrt{2}\)
=>\(\frac{AB.AC}{AM.AN}\ge3+2\sqrt{2}\left(ĐPCM\right)\)
^_^
Câu 1:
Xét ΔABC có
BM là đường phân giác ứng với cạnh AC
nên \(\dfrac{AM}{MC}=\dfrac{AB}{BC}\left(1\right)\)
Xét ΔABC có
CN là đường phân giác ứng với cạnh AB
nên \(\dfrac{AN}{NB}=\dfrac{AC}{BC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)
hay MN//BC
Xét tứ giác BNMC có MN//BC
nên BNMC là hình thang
mà \(\widehat{NBC}=\widehat{MCB}\)
nên BNMC là hình thang cân
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath