K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

Hình bạn tự vẽ nhá, ta có BĐT cần chúng minh <=>\(\frac{AC.AB}{AM.AN}\ge3+2\sqrt{2}\)

Áp dụng tính chất của đường phân giác, ta có \(\frac{AM}{AC}=\frac{AB}{AB+BC};\frac{AN}{AB}=\frac{AC}{AC+BC}\Rightarrow\frac{AB.AC}{AM.AN}=\frac{\left(AC+BC\right)\left(AB+BC\right)}{AB.AC}\)

=\(\frac{AB.AC+BC\left(AB+AC\right)+BC^2}{AB.AC}=1+\frac{BC\left(AB+AC\right)+BC^2}{AB.AC}\)

Mà \(BC=\sqrt{BC^2}=\sqrt{AB^2+AC^2}\)

Mà \(AB^2+AC^2\ge2AB.AC\Rightarrow BC\ge\sqrt{2}.\sqrt{AB.AC}\)

Vì \(AB+AC\ge2\sqrt{AB.AC}\Rightarrow BC\left(AB+AC\right)\ge2\sqrt{2}AB.AC\)(1)

Ta có \(BC^2=AB^2+AC^2\ge2AB.AC\)(2)

Từ (1) và (2) 

=>\(BC\left(AB+AC\right)+BC^2\ge2AB.AC+2\sqrt{2}AB.AC\)

=>\(\frac{BC\left(AB+AC\right)+BC^2}{AB.AC}\ge2+2\sqrt{2}\Rightarrow\frac{BC\left(AB+AC\right)+BC^2}{AB.AC}+1\ge3+2\sqrt{2}\)

=>\(\frac{AB.AC}{AM.AN}\ge3+2\sqrt{2}\left(ĐPCM\right)\)

^_^

8 tháng 2 2018

Mk làm cho bài bđt nha

Bài 2 : 

Có : (x-y)^2 >= 0

<=> x^2-2xy+y^2 >= 0

<=> x^2+y^2 >= 2xy

Tương tự : y^2+z^2 >= 2yz ; z^2+x^2 >= 2zx

=> 2.(x^2+y^2+z^2) >= 2xy+2yz+2zx

<=> x^2+y^2+z^2 >= xy+yz+zx

<=> x^2+y^2+z^2+2xy+2yz+2zx >= 3.(xy+yz+zx)

<=> (x+y+z)^2 >= 3.(xy+yz+zx)

=> ĐPCM

Dấu "=" xảy ra <=> x=y=z

Tk mk nha