K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

Xét hiệu:

\(\left(a+1\right)^2-a\left(a+2\right)\)

\(=a^2+2a+1-a^2-2a\)

\(=1>0\) ( Luôn đúng)

\(a\left(a+2\right)< \left(a+1\right)^2\)

QT
Quoc Tran Anh Le
Giáo viên
3 tháng 6 2018

Ta có: a(a+2) = a2 + 2a

Ta cũng có: (a+1)2 = a2 + 2a + 1

Vì a2 + 2a < a2 + 2a + 1 => a(a+2) < (a+1)2 [đpcm]

15 tháng 10 2018

Ta có: \(b;c\in\left[0;1\right]\Rightarrow\hept{\begin{cases}b^2\le b\\c^3\le c\end{cases}}\) (1)

\(a;b;c\in\left[0;1\right]\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}}\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

\(\Leftrightarrow a+b+c-ab-bc-ca+abc-1\le0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1\)(2)

Từ (1) và (2) suy ra: \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\)

=> ĐPCM. Dấu "=" xảy ra <=> (a;b;c) là 1 trong các hoán vị của (0;1;1) hoặc (0;0;1).

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:
Áp dụng BĐT AM-GM:

$ab^2-a^2b=ab(b-a)\leq a(1-a)\leq (\frac{a+1-a}{2})^2=(\frac{1}{2})^2=\frac{1}{4}$

Ta có đpcm

Giá trị này đạt tại $b=1; a=\frac{1}{2}$

15 tháng 4 2018

\(Ta\)có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{20^2}< \frac{1}{19.20}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow A< 1-\frac{1}{20}< 1\left(Đpcm\right)\)

Chúc bạn học tốt !!! 

1 tháng 5 2019

Ta có: A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{3013^2}\)

A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{3012.3013}\)

A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{3012}-\frac{1}{3013}\)

A < \(1-\frac{1}{3013}\)

A < \(\frac{3012}{3013}\)< 3/4