Cho a+ b +c +ab + bc=ac = 36
C/m a^2 +b^2 +c^2 >= 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu: a2 + b2 + c2 - ab - ac - bc
<=> 2(a2 + b2 + c2 - ab - ac - bc)
<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ac + a2
<=> (a - b)2 + (b - c)2 + (c - a)2 >= 0
Dấu "=" xảy ra <=> a = b = c mà abc = 1 => a=b=c=1 => a^3 = 1
mà a^3 > 36 (mâu thuẫn)
=> a2 + b2 + c2 - ab - ac - bc > 0
<=> a2 + b2 + c2 > ab + ac + bc
P/S: mk mới nghĩ ra cách này thôi, bn đọc tham khảo
Có : (a-b)^2 >= 0
<=> a^2+b^2 >= 2ab
Tương tự : b^2+c^2 >= 2bc
c^2+a^2 >= 2ca
=> 2.(a^2+b^2+c^2) >= 2.(ab+bc+ca)
<=> a^2+b^2+c^2 >= ab+bc+ca
Dấu "=" xảy ra <=> a=b=c và abc = 1 <=> a=b=c=1 <=> a^3 = 1 < 36 ( mâu thuẫn đề cho )
=> a^2+b^2+c^2 > ab+bc+ca
Tk mk nha
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
cho 2 biểu thức mà c/m 1 biểu thức M là sao
Biểu thức N vứt sọt à hay làm cái j v :V
tớ cũng nghĩ vậy nhưng mãi sau mới biết chứng minh M =N rồi chứng minh N >=(a+b+c)/8 để suy ra M >=(a+b+c)/8
Lời giải:
Áp dụng BĐT AM-GM ta có:
$a^2+9\geq 2\sqrt{9a^2}=2|3a|\geq 6a$
Tương tự: $b^2+9\geq 6b; c^2+9\geq 6c$
Cộng theo vế:
$a^2+b^2+c^2\geq 6(a+b+c)-27(*)$
Cũng áp dụng BĐT AM-GM:
$a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab$
Hoàn toàn tương tự và cộng theo vế:
$2(a^2+b^2+c^2)\geq 2(ab+bc+ac)$
$\Leftrightarrow 6(a^2+b^2+c^2)\geq 6(ab+bc+ac)(**)$
Lấy $(*)+(**)\Rightarrow 7(a^2+b^2+c^2)\geq 6(a+b+c+ab+bc+ac)-27=6.36-27=189$
$\Rightarrow a^2+b^2+c^2\geq 27$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=3$
>= tức \(\ge\)ak?
Bạn tham khảo lời giải tại đây:
Câu hỏi của Nguyễn Thanh Hiền - Toán lớp 8 | Học trực tuyến