K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Xét hiệu:   a2 + b2 + c2 - ab - ac - bc  

<=>  2(a2 + b2 + c2 - ab - ac - bc)  

<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ac + a2  

<=>  (a - b)2 + (b - c)2 + (c - a)2   >=  0 

Dấu "=" xảy ra  <=>  a = b = c   mà  abc = 1   =>  a=b=c=1    =>  a^3 = 1

mà  a^3  >  36    (mâu thuẫn)

=>   a2 + b2 + c2 - ab - ac - bc  >  0

<=>  a2 + b2 + c2 >  ab + ac + bc

P/S: mk mới nghĩ ra cách này thôi, bn đọc tham khảo

14 tháng 3 2018

Có : (a-b)^2 >= 0

<=> a^2+b^2 >= 2ab

Tương tự : b^2+c^2 >= 2bc

                  c^2+a^2 >= 2ca

=> 2.(a^2+b^2+c^2) >= 2.(ab+bc+ca)

<=> a^2+b^2+c^2 >= ab+bc+ca

Dấu "=" xảy ra <=> a=b=c và abc = 1 <=> a=b=c=1 <=> a^3 = 1 < 36 ( mâu thuẫn đề cho )

=> a^2+b^2+c^2 > ab+bc+ca

Tk mk nha

11 tháng 3 2021

Ta cần chứng minh: \(\dfrac{a^2}{2}+b^2+c^2>ab+bc+ca\Leftrightarrow\dfrac{a^2}{2}+b^2+c^2-ab-bc-ca>0\Leftrightarrow\dfrac{a^2}{4}+b^2+c^2+ab+ca+2bc-3bc+\dfrac{a^2}{4}>0\) \(\Leftrightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2}{12}+\dfrac{a^2}{6}-3bc>0\Leftrightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2-36bc}{12}+\dfrac{a^2}{6}>0\) Mà \(a^3>36;abc=1\Rightarrow a^3>36abc\Rightarrow a^2>36bc\) 

\(\Rightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2-36bc}{12}+\dfrac{a^2}{6}>0\) luôn đúng

11 tháng 3 2021

Này Nguyễn Trọng Chiến, mk ko hiểu cái chỗ tách ra thành: \(\dfrac{a^2}{4}+b^2+c^2+ab+ca+2bc-3bc+\dfrac{a^2}{4}>0\). Sao bn tách đc vậy??

Bạn học delta chưa nhỉ, HSG chắc chắn là học rồi:vv

27 tháng 4 2021

delta là độ chênh lệch đó hả???肖赵战颖

4 tháng 3 2018

dựng tia Bx cắt cạnh AC tại D sao cho góc CBx = 20o
có gócBCD = 80o => góc BDC = 180o-20o-80o = 80o = góc BCD
=> tgiác BCD cân (tại B) ; gọi H là hình chiếu của A trên Bx
có góc ABH = 80o - 20o = 60o => HAB là nửa tgiác đều
=> BH = AB/2 = b/2 ; AH^2 = 3b^2/4
BD = BC = a => DH = BH-BD = b/2 - a
hai tgiác cân BCD và ABC đồng dạng => CD/BC = BC/AB
=> CD = BC^2/AB = a^2/b
=> AD = AC - CD = b - a^2/b

pitago cho tgiác vuông HAD ta có: AD^2 = AH^2 + DH^2
thay số từ các tính toán trên:
(b - a^2/b)^2 = 3b^2/4 + (b/2 - a)^2
<=> b^2 + a^4/b^2 - 2a^2 = 3b^2/4 + b^2/4 + a^2 - ab
<=> a^4/b^2 = 3a^2 - ab
<=> a^3/b^2 = 3a - b
<=> a^3 = 3a.b^2 - b^3
<=> a^3 + b^3 = 3a.b^2 đpcm

bạn làm tương tự như thế chứ bài này gần giống bài của bạn

10 tháng 3 2018

a) Xét \(\Delta ABC\)\(\Delta HBA\) :

\(\widehat{BAC}=\widehat{BHA}\left(=90^0\right)\)

\(\widehat{B}chung\)

\(\Rightarrow\) \(\Delta ABC\) đồng dạng với \(\Delta HBA\) (g.g)

\(\Rightarrow\) \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)

\(\Rightarrow\) \(AB^2=HB\cdot BC\)

Xét \(\Delta ABC\)\(\Delta HAC\):

\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)

\(\widehat{C}chung\)

\(\Rightarrow\)\(\Delta ABC\) đồng dạng với \(\Delta HAC\) (g.g) \(\Rightarrow\) \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\) \(\Rightarrow\) \(AC\cdot AC=BC\cdot HC\) \(\Rightarrow\) \(AC^2=BC\cdot HC\) b)