K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
NV
12 tháng 12 2020

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)

\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Ta có:

\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)

27 tháng 11 2023

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

=>\(2\left(ab+bc+ac\right)=0\)

=>ab+bc+ac=0

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

=>\(\dfrac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{3}{abc}\)

=>\(\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3\cdot ab\cdot bc\cdot\left(ab+bc\right)+\left(ac\right)^3=3\left(abc\right)^2\)

=>\(\left(-ac\right)^3-3\cdot ab\cdot bc\cdot\left(-ac\right)+\left(ac\right)^3-3\left(abc\right)^2=0\)

=>\(-a^3c^3+a^3c^3+3a^2b^2c^2-3a^2b^2c^2=0\)

=>0=0(đúng)

1: Ta có: \(a^2+b^2+c^2\)

\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)

\(=5^2-2\cdot174=-323\)