Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)
=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)
Ta cần chứng minh: \(\dfrac{a^2}{2}+b^2+c^2>ab+bc+ca\Leftrightarrow\dfrac{a^2}{2}+b^2+c^2-ab-bc-ca>0\Leftrightarrow\dfrac{a^2}{4}+b^2+c^2+ab+ca+2bc-3bc+\dfrac{a^2}{4}>0\) \(\Leftrightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2}{12}+\dfrac{a^2}{6}-3bc>0\Leftrightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2-36bc}{12}+\dfrac{a^2}{6}>0\) Mà \(a^3>36;abc=1\Rightarrow a^3>36abc\Rightarrow a^2>36bc\)
\(\Rightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2-36bc}{12}+\dfrac{a^2}{6}>0\) luôn đúng
Này Nguyễn Trọng Chiến, mk ko hiểu cái chỗ tách ra thành: \(\dfrac{a^2}{4}+b^2+c^2+ab+ca+2bc-3bc+\dfrac{a^2}{4}>0\). Sao bn tách đc vậy??
Xét hiệu: a2 + b2 + c2 - ab - ac - bc
<=> 2(a2 + b2 + c2 - ab - ac - bc)
<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ac + a2
<=> (a - b)2 + (b - c)2 + (c - a)2 >= 0
Dấu "=" xảy ra <=> a = b = c mà abc = 1 => a=b=c=1 => a^3 = 1
mà a^3 > 36 (mâu thuẫn)
=> a2 + b2 + c2 - ab - ac - bc > 0
<=> a2 + b2 + c2 > ab + ac + bc
P/S: mk mới nghĩ ra cách này thôi, bn đọc tham khảo
Có : (a-b)^2 >= 0
<=> a^2+b^2 >= 2ab
Tương tự : b^2+c^2 >= 2bc
c^2+a^2 >= 2ca
=> 2.(a^2+b^2+c^2) >= 2.(ab+bc+ca)
<=> a^2+b^2+c^2 >= ab+bc+ca
Dấu "=" xảy ra <=> a=b=c và abc = 1 <=> a=b=c=1 <=> a^3 = 1 < 36 ( mâu thuẫn đề cho )
=> a^2+b^2+c^2 > ab+bc+ca
Tk mk nha