Cho tam giác ABC cân. Trên cạnh đáy BC lấy D sao cho CD = 2BD. CMR \(\widehat{BAD}< \dfrac{1}{2}\widehat{CAD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lê Tự Nhật Thạch - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC cân. Trên cạnh đáy BC lấy điểm D sao cho CD = 2BD. So sánh số đo hai góc BAC và CAD
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lê Tự Nhật Thạch - Toán lớp 7 - Học toán với OnlineMath
Đăng lên rồi sáng mai coi có ko để chép à.
để coi có thời gian ko t giải cho
ko thì mai lên cho chép
Gọi M là trung điểm DC và A' là điểm thuộc tia AM sao cho AM = MA'.
Khi đó ta thấy ngay \(\Delta AMC=\Delta A'MD\left(c-g-c\right)\)
\(\Rightarrow\widehat{MAC}=\widehat{MA'D}\) và AC = A'D.
Ta cũng có ngay \(\Delta ABD=\Delta ACM\left(c-g-c\right)\Rightarrow\widehat{BAD}=\widehat{CAM}\) và AB = AC
Kẻ AH vuông góc BC. Do tam giác ABC cân nên AH đồng thời là trung tuyến.
Vậy thì ta thấy ngay DH < BH nên theo quan hệ giữa đường xiên và hình chiếu ta có AD < AB
Suy ra AD < AC hay AD < DA'
Xét tam giác ADA' có AD < DA' nên theo quan hệ giữa cạnh và góc trong tam giác ta có :
\(\widehat{DAM}>\widehat{DA'M}\Rightarrow\widehat{DAM}>\widehat{MAC}\)
Lại có \(\widehat{DAM}+\widehat{MAC}=\widehat{CAD}\) nên \(\widehat{MAC}< \frac{1}{2}\widehat{CAD}\)
Vậy thì \(\widehat{BAD}< \frac{1}{2}\widehat{CAD}\left(đpcm\right)\)
Tam giác ABC cân ở đâu bạn
day bc => can tai A