Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn làm theo cách này nhé, sẽ ngắn gọn hơn !
A B C D H
Hạ đường cao AH của \(\Delta\)ABC.
Ta có: ^ADH là góc ngoài của \(\Delta\)ADB => ^ADH = ^ABD + ^BAD = 300 + 150 = 450
Xét \(\Delta\)AHD có: ^AHD=900; ^ADH=450 => \(\Delta\)AHD vuông cân tại H => HD = AH.
Dễ thấy: \(\Delta\)AHB là tam giác nửa đều => AH=1/2.AB => HD=1/2.AB
\(\Delta\)AHC cũng là tam giác nửa đều => HC=1/2.AC
=> HD + HC = 1/2 (AB+AC) => CD = (AB+AC)/2
=> AC + CD = AC + (AB+AC)/2. Do \(\Delta\)ABC nửa đều => AC=BC/2
=> AC + CD = BC/2 + (AB+AC)/2 = CABC/2 (đpcm).
A B C D E I H K
Qua D kẻ đường thẳng vuông góc với BC cắt tia CA tại E. DE giao AB ở I
Gọi H và K lần lượt là hình chiếu của A lên CD và DE
Xét \(\Delta\)BID và \(\Delta\)AIE: ^BDI = ^EAI = 900; ^BID = ^AIE (Đối đỉnh)
=> ^DBI = ^AEI hay ^HBA = ^KEA
Ta có: ^HAB + ^HBA =900; ^KAE + ^KEA = 900. Mà ^HBA=^KEA => ^HAB = ^KAE.
Ta thấy: ^ADC là góc ngoài \(\Delta\)BAD => ^ADC = ^BAD + ^ABD = 300 + 150 = 450
Mà ^CDE = 900 = .^CDE= 2.^ADC => DA là phân giác ^CDE
Do H và K là hình chiếu của A lên CD và DE => AH=AK (T/c đường phân giác)
Xét \(\Delta\)AHB và \(\Delta\)AKE: AH=AK; ^AHB = ^AKE =900; ^HAB = ^KAE (cmt)
=> \(\Delta\)AHB = \(\Delta\)AKE (g.c.g) => AB=AE (2 cạnh tương ứng)
Xét \(\Delta\)CDE: ^CDE=900; ^DCE=600 => \(\Delta\)CDE là tam giác nửa đều
= > \(CD=\frac{CE}{2}=\frac{AC+AE}{2}=\frac{AB+AC}{2}\)(Do AB=AE)
\(\Leftrightarrow AC+CD=AC+\frac{AB+AC}{2}\)(1)
Mặt khác \(\Delta\)ABC là tam giác nửa đều => \(AC=\frac{BC}{2}\)(2)
Từ (1) và (2) \(\Rightarrow AC+CD=\frac{BC}{2}+\frac{AB+AC}{2}=\frac{AB+AC+BC}{2}=\frac{C_{\Delta ABC}}{2}\)
=> ĐPCM.
A B C M O I x
Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ ^CAx=^OAB. Trên Ax lấy điểm I sao cho AO=AI
Nối I với O và C.
Xét \(\Delta\)AMB và \(\Delta\)AMC:
AB=AC
AM chung => ^MAB < ^MAC hay ^OAB < ^OAC
MB<MC
Mà ^OAB=^IAC => ^IAC < ^OAC
Xét \(\Delta\)AIC và \(\Delta\)AOC:
Cạnh AC chung
^IAC < ^OAC => IC < OC
AI=AO
Xét \(\Delta\)OCI có: IC < OC => ^OIC > ^IOC (1)
Ta có: Tam giác OAI: AO=AI => \(\Delta\)OAI cân tại A => ^AIO=^AOI (2)
Từ (1) và (2) => ^OIC+^AIO > ^IOC+^AOI => ^AIC > ^AOC (3)
Sau đó c/m \(\Delta\)AOB=\(\Delta\)AIC (c.g,c) => ^AIC=^AOB (4)
Từ (3) và (4) => ^AOB > ^AOC (đpcm).
a) Ta có: \(\widehat{IOK}=\widehat{BOC}-\widehat{BOI}-\widehat{KOC}=\widehat{BOC}-60^o\)
Mà \(\widehat{BOC}=180^o-\widehat{B_1}-\widehat{C_1}=180^o-\left(\frac{\widehat{B}}{2}+\frac{\widehat{C}}{2}\right)=180^o-\frac{180^o-\widehat{A}}{2}=180^o-30^o=150^o\)
\(\Rightarrow\widehat{IOK}=150^o-60^o=90^o\Rightarrow OI\perp OK\)
b) Ta có: \(\widehat{BOE}=\widehat{COD}=180^o-30^o-90^o-30^o=30^o\)
Xét \(\Delta BEO;\Delta BIO\); có:
\(\widehat{B_1}=\widehat{B_2}\left(gt\right);\) Chung BO \(;\widehat{IOB}=\widehat{EOB}=30^o\)
=> \(\Rightarrow\Delta BEO=\Delta BIO\left(g.c.g\right)\Rightarrow BE=BI.\)
Tương tự thì KC=DC
Mà BC>BI+KC => BE > BE+DC
a, vì CE//AD nên \(\widehat{ECA}\)=\(\widehat{DAB}\)mà \(\widehat{DAB}\)=90 độ -45 độ=45 độ
=> \(\widehat{ECA}\)=45 độ
trong tam giác EAC có: \(\widehat{EAC}\)=90 độ; \(\widehat{ECA}\)=45 độ(1)
=> \(\widehat{AEC}\)=45 độ(2)
từ (1) và (2) suy ra tam giác AEC cân tại A
b, tam giác AEC cân tại A mà có góc A vuông nên tam giác AEC vuông cân
=> EC là cạnh huyền của tam giác vuông AEC nên EC là cạnh lớn nhất(cạnh huyền lớn hơn cạnh góc vuông)
=> A B C D x E