Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn làm theo cách này nhé, sẽ ngắn gọn hơn !
Hạ đường cao AH của \(\Delta\)ABC.
Ta có: ^ADH là góc ngoài của \(\Delta\)ADB => ^ADH = ^ABD + ^BAD = 300 + 150 = 450
Xét \(\Delta\)AHD có: ^AHD=900; ^ADH=450 => \(\Delta\)AHD vuông cân tại H => HD = AH.
Dễ thấy: \(\Delta\)AHB là tam giác nửa đều => AH=1/2.AB => HD=1/2.AB
\(\Delta\)AHC cũng là tam giác nửa đều => HC=1/2.AC
=> HD + HC = 1/2 (AB+AC) => CD = (AB+AC)/2
=> AC + CD = AC + (AB+AC)/2. Do \(\Delta\)ABC nửa đều => AC=BC/2
=> AC + CD = BC/2 + (AB+AC)/2 = CABC/2 (đpcm).
Qua D kẻ đường thẳng vuông góc với BC cắt tia CA tại E. DE giao AB ở I
Gọi H và K lần lượt là hình chiếu của A lên CD và DE
Xét \(\Delta\)BID và \(\Delta\)AIE: ^BDI = ^EAI = 900; ^BID = ^AIE (Đối đỉnh)
=> ^DBI = ^AEI hay ^HBA = ^KEA
Ta có: ^HAB + ^HBA =900; ^KAE + ^KEA = 900. Mà ^HBA=^KEA => ^HAB = ^KAE.
Ta thấy: ^ADC là góc ngoài \(\Delta\)BAD => ^ADC = ^BAD + ^ABD = 300 + 150 = 450
Mà ^CDE = 900 = .^CDE= 2.^ADC => DA là phân giác ^CDE
Do H và K là hình chiếu của A lên CD và DE => AH=AK (T/c đường phân giác)
Xét \(\Delta\)AHB và \(\Delta\)AKE: AH=AK; ^AHB = ^AKE =900; ^HAB = ^KAE (cmt)
=> \(\Delta\)AHB = \(\Delta\)AKE (g.c.g) => AB=AE (2 cạnh tương ứng)
Xét \(\Delta\)CDE: ^CDE=900; ^DCE=600 => \(\Delta\)CDE là tam giác nửa đều
= > \(CD=\frac{CE}{2}=\frac{AC+AE}{2}=\frac{AB+AC}{2}\)(Do AB=AE)
\(\Leftrightarrow AC+CD=AC+\frac{AB+AC}{2}\)(1)
Mặt khác \(\Delta\)ABC là tam giác nửa đều => \(AC=\frac{BC}{2}\)(2)
Từ (1) và (2) \(\Rightarrow AC+CD=\frac{BC}{2}+\frac{AB+AC}{2}=\frac{AB+AC+BC}{2}=\frac{C_{\Delta ABC}}{2}\)
=> ĐPCM.
Cho tam giác ABC, góc A = 90, góc B = 54. trên cạnh AC lấy điểm D sao cho góc DBC = 18. CMR: BD < AC
BD<AC vì B>C (các góc đối diện của tam giác nhé)
Hok tốt