Tìm x biết : ( 3x - 1).( x2 + 1) < 0
HELP ME !!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x2-1)(x2-4)<0
=> x2-1 và x2-4 trái dấu nhau
Ta thấy: x2 >=0 với mọi x => x2-1 > x2-4
=> \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\Leftrightarrow}\hept{\begin{cases}x>\pm1\\x< \pm2\end{cases}}}\)
=> Không có giá trị củ x thỏa mãn đề bài
\(\left(5-x\right).\left(3x-\frac{1}{4}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}5-x>0\\3x-\frac{1}{4}>0\end{cases}}\) hoặc \(\hept{\begin{cases}5-x< 0\\3x-\frac{1}{4}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 5\\x>\frac{1}{12}\end{cases}}\) hoặc \(\hept{\begin{cases}x>5\\x< \frac{1}{12}\end{cases}}\) (vô lí)
Vậy \(\frac{1}{12}< x< 5\)
Câu 2:
\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)
Tập này có 3 phần tử nguyên
b0 Ta có: \(|x-y|\ge0\forall x,y\)
\(\left(x-16\right)^6\ge0\forall x\)
\(\Rightarrow|x-y|+\left(x-16\right)^6\ge0\forall x,y\)
Mà theo đầu bài \(|x-y|+\left(x-16\right)^6\le0\)
\(\Leftrightarrow|x-y|+\left(x-16\right)^6=0\)
\(\Leftrightarrow\hept{\begin{cases}|x-y|=0\\\left(x-16\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x-16=0\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}y=16\\x=16\end{cases}}\)
VẬY x=16 và y=16
Cảm ơn Lê Tài Bảo Châu nhá!!!!!!
Nhưng bạn làm nốt hộ mik nhé!!!
=>3x-1<0
hay x<1/3