cmr
a4+b4+c4+d4≥4abcd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Áp dụng BĐT Cô si cho 4 số dương, ta có:
\(a^4+b^4+c^4+d^4\ge4.^4\sqrt{\left(abcd\right)^4}=4abcd\)
Dấu "=" \(\Leftrightarrow a=b=c=d\)
Câu 2:
Gọi quãng đường AB là x km (x>0)
\(V_{tb}=\dfrac{S}{t}=\dfrac{x}{\dfrac{x}{\dfrac{2}{20}}+\dfrac{x}{\dfrac{2}{30}}}=\dfrac{x}{\dfrac{x}{40}+\dfrac{x}{60}}=\dfrac{x}{\dfrac{5x}{120}}=\dfrac{120x}{5x}=\dfrac{120}{5}=24\left(\text{km/h}\right)\)
Vậy ...
Áp dụng BĐT Cauchy ta có:
\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)
Tương tự ta cũng có:
\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)
\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)
\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)
Cộng theo vế các BĐT trên, ta được:
\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)
Dấu "=" xảy ra.....
Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))
Cho 4 số a,b,c,d dương
Áp dụng bất đẳng thức Cauchy cho 4 sô
\(\Rightarrow a^4+b^4+c^4+d^4\ge4\sqrt{4}\left(a^4.b^4.c^4.d^4\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\) (ĐPCM)
C1: Do \(a^4;b^4;c^4;d^4\ge0\) nên áp dụng BĐT cauchy cho 4 số không âm ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4.b^4.c^4.d^4}=4abcd\)
C2: Ta có: \(a^4+b^4+c^4+d^4\ge2\sqrt{a^4.b^4}+2\sqrt{c^4.d^4}=\)
\(=2a^2b^2+2c^2d^2\ge2\sqrt{2a^2b^2+2c^2d^2}=4abcd\)