CMR không tồn tại số tự nhiên n để \(n^2+2002\) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9
Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3
Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.
Do đó: n2 + 2002 không là số chính phương với mọi n là STN.
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9
Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3
Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.
Do đó: n2 + 2002 không là số chính phương với mọi n là STN.
giả sử n2 + 2002 = a2
nếu a và n không cùng tính chẵn lẻ
a2 - n2 là số lẻ
mà 2002 là số chẵn
nên nếu a và n không cùng tính chẵn lẻ thì n2 +2002 ko phải là 1 số chính phương
nếu a và n cùng tính chẵn lẻ thì a và n khác 2002 ( vì 2002 không chia hết cho 4 mà a2 - n2 chia hết cho 4 )
vậy ko có số nào thích hợp
Gọi số cần tìm là a
ta có n^2+2002=a^2
a^2-n^2=2002
(a-n)(a+n)=2002
do 2002 chia hết cho 2=>a-n hoặc a+n cũng phải chia hết cho 2
mà a-n-(a+n)=-2n chia hết cho 2
=>a-n và a+n là cặp chẵn lẻ=>a-n hay a+n đều chia hết cho 2
mà 2 số đều chia hết cho 2 thì tích của chúng sẽ chia hết cho 4
=>(a-n)(a+n) chia hết cho 4
mà 2002 ko chia hết cho 4
=>ko có số thự nhiên nào để n^2 +2002 là số chính phương
Giả sử : n^2 + 2006 là số chính phương
=> n2 + 2006 = k2 ( k thuộc N )
=> 2006 = k2 - n2 = ( k - n ).( k + n )
Ta có : 2006 = 2 x 1003
=> k - n = 2 => n = 2 + k
k + n = 1003
=> k + 2 + k = 1003
=> 2k = 1001 => k = 1001/2 ( loại )
Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương
kudo shinichi làm sai đề rồi phải như thế này nè:
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
k cho tớ nha
ai k mh mh k lại
\(n^2+2002=k^2\Leftrightarrow2002=k^2-n^2=\left(k-n\right).\left(k+n\right)\)
ta thấy k-n và k+n cùng tính chẵn lẻ
Mà 2002 chẵn => (k-n).(k+n) đều chẵn khi đó (k-n).(k+n) chia hết cho 2
mà 2002=2.7.11.13
Vậy không tồn tại n thuộc N để n2+2002 là SCP
p/s: có cách ngắn hơn làm với ạ :) + t ko rõ đúng hay sai =,='
Dễ thấy: 2010 chia 4 dư 2
n2 là số chính phương nên chia 4 chỉ có thể dư 0 hoặc 1
=> 2010 + n2 chia 4 chỉ có thể dư 2 hoặc 3, không là số chính phương
Vậy không tồn tại số tự nhiên n thỏa mãn đề bài
Dễ thấy: 2010 chia 4 dư 2
n2 là số chính phương nên chia 4 chỉ có thể dư 0 hoặc 1
=> 2010 + n2 chia 4 chỉ có thể dư 2 hoặc 3, không là số chính phương
Vậy không tồn tại số tự nhiên n thỏa mãn đề bài
giải sử 1002 + n2là số chính phương
=> 1002 + n2=a2
=> a2-n2=1002
mà hiệu của hai số chính phương chia 4 số dư chỉ có thể là 0 hoặc 1
mà 1002 chia 4 dư 2
=> không tồn tại số tự nhiên n để 1002 + n2 là số chính phương
Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)
A = 2018 + ( 2k+ 1+ 1)2
A = 2018 + (2k+2)2
A = 2018 + 4.( k+1)2 ⇒ A ⋮ 2 Nếu A là số chính phương
⇒ A ⋮ 4 ( tính chất 1 số chính phương )
⇒ 2018 ⋮ 4 ( vô lý)
Nếu n là số chẵn n =2k ( k \(\in\) N)
A = 2018 + ( 2k + 1)2;
2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)
A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.
Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương
Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) = a + n - a +n = 2n ( chia hết cho 2 )
\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ
Vậy ta kết luận: 2018 + n^2 không là số chính phương
Giả sử \(n^2+2002\) là một số chính phương, suy ra \(n^2+2002=m^2\) với \(n,m\in Z\)
\(\Leftrightarrow\left(m+n\right)\left(m-n\right)=2002,\) suy ra m + n và m - n là 2 số chẵn
\(\Rightarrow\left(m+n\right)\left(m-n\right)⋮4\) mà \(2004⋮̸4\) vô lí
Vậy không tồn tại số nguyên n để \(n^2+2002\) là 1 số chính phương
câu này hay đấy bạn:
n2+2002 là số chính phương thì n2+2002=a2(a là số tự nhiên khác 0)
⇒a2−n2=2002⇒(a−n)(a+n)=2002
Do 2002⋮2⇒(a−n)(a+n)⋮2hay a−n⋮2hoặc a+n⋮2hoặc a-n và a+n đều⋮2
mà a-n-(a+n)=-2n ⋮2⇒a-n và a+n cùng chẵn hoặc lẻ ⇒ a-n; a+n đều ⋮2⇒(a−n)(a+n)⋮4
Mà 2002 ko chia hết cho 4