K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2023

Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)

A = 2018 + ( 2k+ 1+ 1)2 

A = 2018 + (2k+2)2

A = 2018 + 4.( k+1)2 ⇒ A  ⋮ 2 Nếu A là số chính phương 

⇒ A ⋮ 4 ( tính chất 1 số chính phương ) 

⇒ 2018 ⋮ 4 ( vô lý)

Nếu n là số chẵn  n =2k ( k \(\in\) N)

A = 2018 + ( 2k + 1)2

2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)

A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.

Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương 

 

Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) =  a + n - a +n = 2n ( chia hết cho 2 )

\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ 
Vậy ta kết luận:  2018 + n^2 không là số chính phương

1 tháng 3 2019

giả sử n^2+2008 là 1 số chính phương

suy ra n^2+2008=a^2(a>0)

a^2-n^2=2008

(a-n)(a+n)=2008

thấy a+n>a-n

suy ra a+n)(a-n)= mấy nhân mấy đó (mik chưa tính)

thay vào tìm đc n

nhưng n không là stn

nên n^2+2008 ko là số chính phương vơi n là stn

1 tháng 3 2019

 Đặt   \(n^2+2018=m^2\)

Ta có một  số chính phương chia cho 4 dư 0 hoặc 1

\(n^2+2018=m^2\)=>\(m^2-n^2=2018\)

xét số dư của \(m^2-n^2\)cho 4

ta có bảng 

\(m^2\)             0       1     1    0

\(n^2\)              0         1     0     1

\(m^2-n^2\) 0         0      1     -1

mà \(2018\equiv2\left(mod4\right)\)

mà một số cp chia co 4 dư o hoặc 1

vậy o  tìm đc số thoả mãn

 T I C  K nha!

30 tháng 11 2018

n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9

Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3

Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.

Do đó: n2 + 2002 không là số chính phương với mọi n là STN.

15 tháng 4 2016

Giả sử : n^2 + 2006 là số chính phương 

=> n2 + 2006 = k2 ( k thuộc N )

=> 2006 = k2 - n2 = ( k - n ).( k + n )

Ta có : 2006 = 2 x 1003 

=> k - n = 2 => n = 2 + k

     k + n = 1003

=> k + 2 + k = 1003

=> 2k = 1001 => k = 1001/2 ( loại )

Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương

16 tháng 4 2016

kudo shinichi làm sai đề rồi phải như thế này nè:

 để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

k cho tớ nha

ai k mh mh k lại

15 tháng 2 2019

\(n^2+2002=k^2\Leftrightarrow2002=k^2-n^2=\left(k-n\right).\left(k+n\right)\)

ta thấy k-n và k+n cùng tính chẵn lẻ 

Mà 2002 chẵn => (k-n).(k+n) đều chẵn khi đó (k-n).(k+n) chia hết cho 2  

mà 2002=2.7.11.13

Vậy không tồn tại n thuộc N để n2+2002 là SCP

p/s: có cách ngắn hơn làm với ạ :) + t ko rõ đúng hay sai =,='

15 tháng 2 2019

tối mai duyệt nhé.h đi ngủ đã:))

a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)

\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)

\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)

\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)

b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)

\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm

AH
Akai Haruma
Giáo viên
3 tháng 2 2023

Lời giải:
Nếu $n=2k$ với $k$ tự nhiên. Khi đó:

$A=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$
Nếu $n=2k+1$ với $k$ tự nhiên. Khi đó:
$A=3^{2k+1}+4=9^k.3+4\equiv 1^k.3+4\equiv 7\pmod 8$

Mà 1 scp khi chia 8 có dư 0, 1

$\Rightarrow A$ không thể là scp.

4 tháng 9 2023

chắc khó qué nên ko ai lm cho tớ hic😥

4 tháng 9 2023

Bạn ơi, mình nghĩ là bạn nên chia các bài ra từng CH khác nhau, như vậy các TV sẽ dễ giúp đỡ bạn hơn và chất lượng ctrl có thể tốt hơn bạn nhé.