Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đẻ n2+ 2002 là số chính phương
=> n2+2002= a2 (a lá số tự nhiên khác 0)
=>a2-n2=2002
=> (a-n)(a+n)=2002
do 2002 chia hết cho 2 suy ra a-n hoặc a+n chia hết cho 2 mà a-n-(a+n)=-2n chia hết cho 2
=>a-n và a+n cùng tính chẵn lẻ => a-n,a+n chia hết cho 2
=> (a-n)(a+ n) chia hết cho 4 mà 2002 chia hết cho 4
điều này là vô lí
hok tốt
kt
n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9
Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3
Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.
Do đó: n2 + 2002 không là số chính phương với mọi n là STN.
Giả sử : n^2 + 2006 là số chính phương
=> n2 + 2006 = k2 ( k thuộc N )
=> 2006 = k2 - n2 = ( k - n ).( k + n )
Ta có : 2006 = 2 x 1003
=> k - n = 2 => n = 2 + k
k + n = 1003
=> k + 2 + k = 1003
=> 2k = 1001 => k = 1001/2 ( loại )
Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương
kudo shinichi làm sai đề rồi phải như thế này nè:
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
k cho tớ nha
ai k mh mh k lại
a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)
\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)
\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)
\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)
b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)
\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm
Theo đề bài, lập biểu thức sau:
\(ab+4=x^2\)
\(\Leftrightarrow x^2-4=ab\)
\(\Leftrightarrow x^2-2^2=ab\)
\(\Rightarrow\left(x+2\right)\left(x-2\right)=ab\) (luôn đúng với mọi ab)
=> đpcm
Đặt \(ab+4=m^2\left(m\in N\right)\)
\(\Rightarrow ab=m^2-4=\left(m-2\right)\left(m+2\right)\)
\(\Rightarrow b=\frac{\left(m-2\right)\left(m+2\right)}{a}\)
Ta có : \(m=a+2\Rightarrow m-2=a\)
\(\Rightarrow b=\frac{a\left(a+4\right)}{a}=a+4\)
Vậy với mọi số tự nhiên \(a\) luôn tồn tại \(b=a+4\) để \(ab+4\) là số chính phương .
Giả sử 22 +2002=m2 (m thuộc N)=>m2 -n2 = 2002
Vì hiệu của 2 số chính phương chia cho 4 ko có số dư là 2
mà 2002 : 4 dư 2
Vậy ko có số tự nhiên n nào để n2 +2002 là số chính phương,
dùng phương pháp phản chứng nhé
đặt \(n^2+2002=a^2\)
=> \(a^2-n^2=2002\)
<=> (a+n)(a-n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cùng tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 (vô lý)
=> đpcm
\(n^2+2002=k^2\Leftrightarrow2002=k^2-n^2=\left(k-n\right).\left(k+n\right)\)
ta thấy k-n và k+n cùng tính chẵn lẻ
Mà 2002 chẵn => (k-n).(k+n) đều chẵn khi đó (k-n).(k+n) chia hết cho 2
mà 2002=2.7.11.13
Vậy không tồn tại n thuộc N để n2+2002 là SCP
p/s: có cách ngắn hơn làm với ạ :) + t ko rõ đúng hay sai =,='
tối mai duyệt nhé.h đi ngủ đã:))