K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

a) Một số tự nhiên chẵn có dạng 2k (k(N), khi đó (2k)2 = 4k2 là số chia hết cho 4 còn số tự nhiên lẻ có dạng 2k+1 (k(N) ,

Khi đó (2k+1)2 = 4k2+ 4k +1 là số chia cho 4 dư 1. Như vậy một số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1 , do đó không thể viết đựơc dưới dạng 4n+2 hoặc 4n+3(n(N) 

b) Một số tự nhiên chỉ có thể viết dưới dạng 3k hoặc 3k± 1 (k( N) 
khi đó bình phương của nó có dạng (3k)2 =9k2 là số chia hết cho 3 ,hoặc có dạng (3k± 1) 2 = 9k2 ± 6k +1 là số khi chia cho 3 thì dư 1.
Như vậy một số chính phương không thể viết dưới dạng 3n+2(n(N) ĐPCM.

1 tháng 4 2016

n là số tự nhiên có 2 chữ số nên 10< hoặc = n <100 do đó 21< hoac bang 2n+1<201

2n+1 là số chính phương lẻ nên 2n+1 chỉ có thể nhận 1 trong các giá trị 25;49;81;121;169

suy ra n chỉ có thể nhận 1 trong các giá trị 12;24;40;60;84

suy ra 3n+1 chỉ có thể nhận 1 trong các giá trị 37;73;121;181;253

Trong các số trên chỉ có số 121=11^2 là 1 số chính phương

Vậy số n tự nhiên có 2 chữ số cần tìm là 40

    4 tháng 11 2015

    trong câu hỏi tương tự nhiều lắm bạn 

    12 tháng 4 2016

    Ta có: n là số tự nhiên có 2 chữ số

    => 10 \(\le\) n \(\le\) 99

    => 21 \(\le\) 2n+1 \(\le\) 199

    Mà 2n+1 là số chính phương  nên

         2n+1 \(\in\) {16;25;36;49;64;81;100;121;169}

       =>   n \(\in\)  {12;24;40;60;84}

       => 3n+1 \(\in\) {37;73;121;181;253}

    Mà 3n+1 là số chính phương nên 3n+1=121

    => n=40

    Vì n là số có 2 chữ số

    →10≤n≤99→21≤2n+1≤199

    Vì 2n+1 là số chính phương→2n+1∈{25;36;49,64;81;100;121;144;169;196}

    Vì 2n+1 là số lẻ→2n+1∈{25;49;81;121;169}

    Ta có bảng sau:

    2n+1254981121169
    n1224406084
    3n+13773121181253

    Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương

    Vậy n=40

    14 tháng 5 2018

    Vì n là số có 2 chữ số

    \(\rightarrow10\le n\le99\)\(\rightarrow21\le2n+1\le199\)

    Vì 2n+1 là số chính phương\(\rightarrow2n+1\in\left\{25;36;49,64;81;100;121;144;169;196\right\}\)

    Vì 2n+1 là số lẻ\(\rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)

    Ta có bảng sau:

    2n+1254981121169
    n1224406084
    3n+13773121181253

    Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương

    Vậy n=40

    31 tháng 1 2017

    Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)

    \(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

    Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)

    mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)

    Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương

    12 tháng 12 2018

    đơngiản tự nghĩ lấy hỏi gì mà hỏi 

    17 tháng 3 2016

    giả sư tồn tại n sao cho n2+2002 là số chính phương

    Đặt n2+2002=m(m thuộc N )

    => m2-n= 2002 => (m+n)(m-n) = 2002 (bất đẳng thức)

    vì m-n+m+n = 2m là một số chẵn; mặt khác 2002 chia hết cho 2

    => (m+n)(m-n) chia hết cho 4 mà 2002 không chia hết cho 4 nên không tồn tại n sao cho n2+2002 là số chính phương.