+Chứng minh:
n\(^5\)−n ⋮ 30 với n ∈ N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có; n5-n=n(n4-1)
=n(n2-1)(n2-4+5)
=n(n-1)(n+1)(n2-4)+5n(n-1)(n+1)
=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1)
Vì n(n-1)(n+1) là tích 3 số tự nhiên liên tiếp nên n(n-1)(n+1) chia hết cho 2 và 3 (1) => 5n(n-1)(n+1) chia hết cho 30 (2)
CÓ: n(n-1)(n+1)(n-2)(n+2) là tích 5 số tự nhiên liên tiếp nên n(n-1)(n+1)(n-2)(n+2) chia hết cho 5
Mà n(n-1)(n+1) chia hết cho 2 và 3 => n(n-1)(n+1)(n-2)(n+2) chia hết cho 30 (3)
Từ (1),(2),(3) => n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1) chia hết cho 30 hay n5-n chia hết cho 30 (đpcm)
chia hết cho 3: Tích của ba số tự nhiên liên tiếp
Chia hết cho 5: Tích của 5 số tự nhiên liên tiếp
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Dễ thấy (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp nên (n-1)n(n+1) chia hết cho 2 và 3
=>(n-1)n(n+1)(n2+1) chia hết cho 2 và 3 <=> n5-n chia hết cho 2 và 3 (*)
Xét 5 trường hợp: n=5k; n=5k+1; n=5k+2; n=5k+3; n=5k+4 bạn sẽ suy ra n5-n luôn chia hết cho 5 nhé
Kết hợp với phần (*) sẽ suy ra nó luôn chia hết cho 30
ta có
A=n^5-n
=n(n^4-1)
=n(n-1)(n+1)(n^2+1)
n(n-1)(n+1) chia hết cho 6(1)
nếu n=5k => A chia hết cho 5.6=30
nếu n=5k+1 =>n -1 chia hết cho 5 =>từ 1=> A chia hết cho 30
Nếu n=5k+2 =>t n^2+1=25k^2+20k+5 chia hết cho 5
từ 1=> A chia hết cho 30
nếu n=5k+3 =>^2+1=25k^2+30k+10 chia hết cho 5
=>A chia hết cho 30
Nếu n=5k+4 =>n+1=5k+5 chia hết cho 5
từ 1=>A chia hết cho 30
Vậy với n nguyên dương thì n^5-n chia hết cho 30
\(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n^2+1\right)\left(n+1\right)\left(n-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n^2-4+5\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n-2\right)+5n\left(n+1\right)\left(n-1\right)⋮5\)
n5−n=n(n4−1)=n(n2−1)(n2+1)n5−n=n(n4−1)=n(n2−1)(n2+1)
=n(n−1)(n+1)(n2−4+5)=n(n−1)(n+1)(n2−4+5)
=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)
=n(n−1)(n+1)(n−2)(n+2)=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)5n(n−1)(n+1)
--Vì n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)là tích của 5 số nguyên liên tiếp
=> n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) chia hết cho 2;3;5
=> n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) chia hết cho 30 (*)
-- vì n(n−1)(n+1)n(n−1)(n+1) là tích của 3 số nguyên liên tiếp
⇒n(n−1)(n+1)⇒n(n−1)(n+1) chia hết cho 2; 3
⇒n(n−1)(n+1)⋮6⇒n(n−1)(n+1)⋮6
=> 5n(n−1)(n+1)⋮5.6=305n(n−1)(n+1)⋮5.6=30 (**)
từ * và ** => n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)⋮30n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)⋮30
hay n5−n⋮30(đpcm)
like nhoa !!