Sử dụng phương pháp phản chứng, hãy chứng minh:
Nếu \(\sqrt{a}< \sqrt{b}\) a<b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức ngược dấu rồi.
BĐT \(\Leftrightarrow\left(a+b+c\right)\prod\left(a+b-c\right)\le a^4+b^4+c^4\)
Đặt $\left\{ \begin{array}{l}a + b + c = 2s\\ab + bc + ca = {s^2} + 4Rr + {r^2}\\abc = 4sRr\end{array} \right.$
Bất đẳng thức cần chứng minh quy về:
\(16\,r{s}^{2} \left( R-2\,r \right) +2\,{s}^{2} \left( 5\,{r}^{ 2}+{s}^{2} -16\,Rr\right) +2\,{r}^{2} \left( 16\,{R}^{2}+8\,Rr+{r}^{2}-3\,{s} ^{2} \right) \geqslant 0\)
Đây là điều hiển nhiên.
BĐT trên bị ngược dấu rồi.
Theo công thức Heron:
\(S=\dfrac{1}{4}\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\).
Do đó ta chỉ cần cm:
\(\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\leq a^2b^2+b^2c^2+c^2a^2\). (1)
Ta có \(\left(1\right)\Leftrightarrow a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\ge0\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2}{2}+\dfrac{\left(b^2-c^2\right)^2}{2}+\dfrac{\left(c^2-a^2\right)^2}{2}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi tam giác đó đều.
Giả sử các số nguyên tố là một dãy hữu hạn, tăng dần như sau:
\(2;3;5;7;.........;n\)
Xét số \(p=\left(2\times3\times5\times7\times.....\times n\right)+1\)
ta thấy ngay p không chia hết cho \(2;3;5;7;...;n\)
=> p cũng là một số nguyên tố.
Vậy điều giả sử sai hay có vô hạn số nguyên tố.
#)Giải :
Áp dụng BĐT Cauchy cho hai số không âm :
\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\left(1\right)\)
Ta có: \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\Leftrightarrow\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Leftrightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\Leftrightarrow a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\Leftrightarrow\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđpcm\)
Giả sử \(\sqrt{2}\)là số hữu tỉ thì \(\sqrt{2}=\frac{a}{b}\left[\left(a,b\right)=1\right]\)
\(\Rightarrow a^2=2b^2\)(1)\(\Rightarrow a^2⋮2\)
Mà 2 là số nguyên tố nên \(a⋮2\)
Đặt a = 2k.Thay vào (1), ta được: \(4k^2=2b^2\Rightarrow2k^2=b^2\)
\(\Rightarrow b^22⋮\).Mà 2 là số nguyên tố nên \(b⋮2\)
Vậy a và b cùng chia hết cho 2, trái với (a,b) =1
Vậy \(\sqrt{2}\)là số vô tỉ hay \(\sqrt{2}+3\)là số vô tỉ (đpcm)
Vì 3 là số hữu tỉ rồi nên phải cần c/m √2 là số vô tỉ là đc!
Giả sử √2 là số hữu tỉ
=> √2 = a/b với a, b nguyên và a/b tối giản hay (a ; b) = 1 (1)
√2 = a/b
<=> 2 = a²/b²
<=> b² = a²/2
=> a² chia hết cho 2
=> a chia hết cho 2 (vì 2 là số nguyên tố) (2)
=> a = 2k. Thay vào :
2 = a²/b²
<=> 2 = (2k)²/b²
<=> b² = 2k²
=> b² chia hết cho 2
=> b chia hết cho 2 (3)
Từ (2) và (3) => ƯC (a ; b) = 2
=> Mâu thuẫn (1)
=> Điều giả sử là sai
=> √2 là số vô tỉ (đpcm)