Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử các số nguyên tố là một dãy hữu hạn, tăng dần như sau:
\(2;3;5;7;.........;n\)
Xét số \(p=\left(2\times3\times5\times7\times.....\times n\right)+1\)
ta thấy ngay p không chia hết cho \(2;3;5;7;...;n\)
=> p cũng là một số nguyên tố.
Vậy điều giả sử sai hay có vô hạn số nguyên tố.
a/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2cabc+bca≥2abc.bca=2c
Tương tự
abc+cab≥2babc+cab≥2b
bca+cab≥2abca+cab≥2a
Cộng các vế của BĐT
2(abc+bca+cab)≥2(1a+1b+1c)2(abc+bca+cab)≥2(1a+1b+1c)
↔abc+bca+cab≥1a+1b+1c↔abc+bca+cab≥1a+1b+1c
b/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2babc+bca≥2abc.bca=2b
Tương tự
abc+cab≥2aabc+cab≥2a
bca+cab≥2cbca+cab≥2c
Cộng các vế của BĐT
2(abc+bca+cab)≥2(a+b+c)2(abc+bca+cab)≥2(a+b+c)
↔abc+bca+cab≥a+b+c
Xét hình sau.
\(\hept{\begin{cases}\sqrt{a^2+b^2}=AB\\\sqrt{b^2+c^2}=BC\end{cases}}\)
Cần chứng minh \(AB.BC\ge BH.AC\)
Ta có: \(BH.AC=2S_{\Delta ABC}=AB.BC.\sin ABC\)
Vậy cần chứng minh \(AB.BC\ge AB.BC.\sin ABC\Leftrightarrow\sin ABC\le1\)
Bất bẳng thức cuối hiển nhiên đúng, nên ta có đpcm.
a) \(\dfrac{a^2+3}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\ge2\sqrt{\sqrt{a^2+2}.\dfrac{1}{\sqrt{a^2+2}}}=2\)
Dấu = xảy ra khi \(\sqrt{a^2+2}=\dfrac{1}{\sqrt{a^2+2}}\Leftrightarrow a^2=-1\left(vn\right)\)
\(\Rightarrow\) Dấu "=" không xảy ra
Vậy \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
b)Với x,y>0,ta cm bđt phụ sau:
\(x^3+y^3\ge xy\left(x+y\right)\) (1)
Thật vậy (1)\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)
\(\Leftrightarrow\cdot\left(x+y\right)\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) có:
\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}=\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}.\sqrt{b}}\ge\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" xra khi a=b
Vậy...
Áp dụng BĐT cô-si, ta được:
\(\hept{\begin{cases}\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\\\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\end{cases}}\)
=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}+\sqrt{a}+\sqrt{b}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)
=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\) (đpcm)
Vậy....
Biến đổi tương đương ta được :
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{ab}}\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}\)
\(\Leftrightarrow\sqrt{ab}\le a-\sqrt{ab}+b\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( đúng với đk )
Ta có a + b + \(2\sqrt{ab}\)> c
<=> \(2\sqrt{ab}\)> 0 (đúng)
Ta có a3 + b3 + \(2ab\sqrt{ab}\)> c3 = a3 + b3 + 3ab(a + b)
<=> ab(\(2\sqrt{ab}\)- 3a - 3b) >0 (sai)
Vậy cái thứ 2 là dấu ngược lại mới đúng