Cho tam giác ABC vuông tại A, đường cao AH,đường phân giác AD.Cho biết HB=112,HC=63.
a)Tính AH
b)Tính AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác AHB và tam giác CAB có
H = A = 90
C chung
=> AHB đồng dạng CAB ( g.g )
=>\(\frac{AB}{BC}=\frac{HB}{AB}\Leftrightarrow AB^2=HB.BC\Leftrightarrow AB=\sqrt{175.112}=140\)
\(AH=\sqrt{AB^2-BH^2}=\sqrt{140^2-112^2}=84\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{175^2-140^2}=105\)
VÌ AD là tia phân giác trogn tam giác ABC
\(\frac{BD}{AB}=\frac{DC}{AC}\)
THEO T/C DÃY TĨ SỐ = NHAU
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{175}{140+105}=\frac{5}{7}\)
\(\frac{BD}{AB}=\frac{5}{7}\Rightarrow BD=\frac{5.AB}{7}=\frac{5.140}{7}=100\)
HD = HB - BD = 112 -100 = 12
\(AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+84^2}=85\)
Xét : \(\Delta AHB,\Delta CAB\) có:
\(\widehat{H}=\widehat{A}=90^o\)
=> C là góc chung.
=> AHB đồng dạng CAB (g.g)
\(\Rightarrow\frac{AB}{BC}=\frac{HB}{AB}\Leftrightarrow AB^2=HB.HC\Leftrightarrow AB=\sqrt{175.112}=140\)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{140^2-112^2}=84\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{175^2-140^2}=105\)
Vì AD là tia phân giác trong tam giác ABC.
\(\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}\)
Theo tính chất của dãy số bằng nhau ta có:
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{175}{140+105}=\frac{5}{7}\)
\(\frac{BD}{AB}=\frac{5}{7}\Rightarrow BD=\frac{5AB}{7}=\frac{5.140}{7}=100\)
HD = HB - BD = 112 - 100 = 12
\(AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+84^2}=85\)
\(\dfrac{AB}{BC}\) = \(\dfrac{HB}{AB}\) \(\Rightarrow\) AB2 = HB. BC \(\Rightarrow\) AB = \(\sqrt{63.175}\)
= 105
Bạn làm nhầm phần này rồi ><
10c - 11b / 9 =11a-9c/10=9b-10a/11 .chứng minh a/9=b/10=c/11
\(\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{BD}{CD}=\dfrac{4}{3}\)
hay BD=100(cm)
Suy ra: HD=BD-BH=112-100=12(cm)
\(AD=\sqrt{AH^2+HD^2}=\sqrt{84^2+12^2}=60\sqrt{2}\left(cm\right)\)
tự vẽ hình
ta có <HBA+<BAH= 90\(^0\)(vì tam giác ABH vg tại H)
Có <BAH+ <HAC= 90\(^0\)(vì tam giác ABC vg tại A)
=> <HBA=<HAC
Xét tam giác BAH và ACH
<BHA=<AHC\(\left(90^0\right)\)
<ABH=<HAC
=> Tam giác BAH đồng dạng với tam giác ACH
=> BH/AH=AH/CH=> AH^2= BH*CH=4*9=36 cm
b, ta có BC=BH+CH=4+9=13 cm
S(ABC) = AH*BC=36*13=468 cm\(^2\)
Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)
(HC tự tính nha)