Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình
ta có <HBA+<BAH= 90\(^0\)(vì tam giác ABH vg tại H)
Có <BAH+ <HAC= 90\(^0\)(vì tam giác ABC vg tại A)
=> <HBA=<HAC
Xét tam giác BAH và ACH
<BHA=<AHC\(\left(90^0\right)\)
<ABH=<HAC
=> Tam giác BAH đồng dạng với tam giác ACH
=> BH/AH=AH/CH=> AH^2= BH*CH=4*9=36 cm
b, ta có BC=BH+CH=4+9=13 cm
S(ABC) = AH*BC=36*13=468 cm\(^2\)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
AB^2+AC^2=12^2+16^2=20^2
BC=20^2 SUY RA tam giac ABC vuong tai A
xet tam giac AHBva tam giac AbC(A=h=90):
ABH la goc chung suy ra 2 tam giac dong dang
b,vi ti so dien h bang binh phung ti so dong dang suy ra dien tinh abc/dien tinh abh=ab/acsuy ra dien tinh abh=72
thoi ban roi lam the thoi
a)Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=4\cdot9=36\)
hay AH=6(cm)
Vậy: AH=6cm
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
2 Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
xét tam giác AHB và tam giác CAB có
H = A = 90
C chung
=> AHB đồng dạng CAB ( g.g )
=>\(\frac{AB}{BC}=\frac{HB}{AB}\Leftrightarrow AB^2=HB.BC\Leftrightarrow AB=\sqrt{175.112}=140\)
\(AH=\sqrt{AB^2-BH^2}=\sqrt{140^2-112^2}=84\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{175^2-140^2}=105\)
VÌ AD là tia phân giác trogn tam giác ABC
\(\frac{BD}{AB}=\frac{DC}{AC}\)
THEO T/C DÃY TĨ SỐ = NHAU
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{175}{140+105}=\frac{5}{7}\)
\(\frac{BD}{AB}=\frac{5}{7}\Rightarrow BD=\frac{5.AB}{7}=\frac{5.140}{7}=100\)
HD = HB - BD = 112 -100 = 12
\(AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+84^2}=85\)
AD= 60\(\sqrt{2}\)