K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BDEF có

BD//EF

DE//BF

Do đó: BDEFlà hình bình hành

Suy ra: BD=EF=AD

b: Xét ΔABC có

D là trung điểm của AB

DE//BC

Do đó: E là trung điểm của AC

hay AE=EC
c: Xét ΔABC có

E là trung điểm của AC

EF//AB

Do dó: F là trung điểm của BC

hay FB=FC

d: Xét ΔABC có

D là trung điểm của AB

E là trung điểm của AC

DO đó: DE là đường trung bình

=>DE=1/2BC

a: Xét tứ giác BDEF có 

DE//BF

BD//EF

Do đó: BDEF là hình bình hành

Suy ra: EF=BD

mà BD=AD

nên EF=AD

b: Xét ΔADF và ΔFEA có 

AD=FE

AF chung 

DF=EA

Do đó: ΔADF=ΔFEA

a: Xét ΔABC có

D là trung điểm của AB

DE//BC

=>E là trung điểm của AC

=>AE=EC

Xét ΔCAB có

E là trung điểm của CA

EF//AB

=>F là trung điểm của BC

=>FB=FC

b: Xét ΔABC có D,E lần lượt là trung điểm của AB,AC

nên DE là đường trung bình

=>ED=1/2BC

Xét ΔCAB có CF/CB=CE/CA

nên EF//AB

=>FE/AB=CF/CB=1/2

=>FE=1/2AB

30 tháng 11 2014

D là TĐ của AB mà DE //BC nên DE là đg TB của tam giác ABC -->E là TĐ của AC.

E là TĐ của AC mà EF //AB nên EF là đg TB của tam giác CAB--->F là TĐ của BC

22 tháng 12 2017

TB là j

31 tháng 1 2015

de thi lam giup minh coi

 

2 tháng 3 2018

a) Xét tam giác DEF và tam giác FBD có:

Cạnh DF chung

\(\widehat{EDF}=\widehat{BFD}\)  (Hai góc so le trong)

\(\widehat{EFD}=\widehat{BDF}\) (Hai góc so le trong)

\(\Rightarrow\Delta DEF=\Delta FBD\left(g-c-g\right)\Rightarrow EF=BD=AD\)

b)

Xét tam giác ADE và tam giác EFC có:

\(\widehat{DAE}=\widehat{FEC}\)   (Hai góc so le trong)

\(\widehat{EFC}=\widehat{ADE}\left(=\widehat{DBF}\right)\)

\(\Rightarrow\Delta ADE=\Delta EFC\left(g-c-g\right)\Rightarrow AE=EC\)

Từ đó ta cũng suy ra DE = FC

Lại có do \(\Delta DEF=\Delta FBD\Rightarrow DE=FB\)

Vậy nên FC = FB

c) Ta có FC = FB = DE nên \(DE=\frac{BC}{2}\)

EF = AD = DB nên \(EF=\frac{AB}{2}\)

27 tháng 10 2023

loading...  loading...  loading...  

19 tháng 4 2017

Ta chứng minh được AEDF là hình bình hành Þ AD Ç È = I. I là trung điểm của AD và EF. Suy ra E đối xứng với F qua I

AK//ME

=>AKME là hình thang