Cần giải gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\Delta DBC\) vuông tại B có đường cAO BA nên
\(\dfrac{1}{AB^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}\)
\(\Leftrightarrow\dfrac{1}{BD^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Leftrightarrow BD=\dfrac{15}{4}\left(cm\right)\)
\(AD=\sqrt{BD^2-AB^2}=\dfrac{9}{4}\left(cm\right)\)
c)\(\Delta ABD\) vuông tại A có đường cao AF nên
\(BF.BD=AB^2\left(1\right)\)
\(\Delta BAC\) vuông tại có đường cao AE nên
\(BE.BC=AB^2\left(2\right)\)
từ \(\left(1\right)và\left(2\right)\Rightarrow BF.BD=BE.BC\)
1. Những cây sẵn trong tự nhiên, tự bản thân nó được dùng để trang trí: cây hoa (hoa hồng, hoa cẩm chướng..), cây tùng, cây sanh.
2. Phương pháp sinh sản vô tính: giâm cành bằng cát, ghép, chiết cành, nuôi cấy mô tế bào.
phương pháp sinh sản hữu tính: thụ phấn trong tự nhiên.
3. chọn chậu cây cảnh dựa trên các yếu tố: chất liệu, kích thước,
4. tránh hư hỏng do va đập cơ học
5. Sử dụng axit abxixic để ức chế sinh trưởng.
6. kỹ thuật sản xuất, an toàn thực phẩm, môi trường làm việc đảm bảo, nguồn gốc sản phẩm rõ ràng.
Bài 2:
a) Các góc kề với góc pOq là:
\(\widehat{sOq};\widehat{nOp};\widehat{mOp}\)
b) Các góc kề bù trong hình là:
\(\widehat{mOn}\) và \(\widehat{sOn}\)
\(\widehat{mOp}\) và \(\widehat{sOp}\)
\(\widehat{mOq}\) và \(\widehat{sOq}\)
3:
a: \(\sqrt{14^2}=14\)
b: \(\sqrt{16^2}=16\)
c: \(\sqrt{169}=13\)
d: \(\sqrt{\left(\dfrac{3}{4}\right)^2}=\dfrac{3}{4}\)
1:
a: \(\sqrt{144}=\sqrt{12^2}=12\)
b: \(\sqrt{\left(-13\right)^2}=\left|-13\right|=13\)
c: \(-\sqrt{\dfrac{16}{81}}=-\sqrt{\left(\dfrac{4}{9}\right)^2}=-\dfrac{4}{9}\)
d: \(\sqrt{36}+\sqrt{225}=6+15=21\)
Câu 1:
\(\sqrt{16}=4\)
\(\sqrt{36}=6\)
\(\sqrt{81}=9\)
\(\sqrt{144}=12\)
\(\sqrt{625}=25\)
\(\sqrt{\dfrac{4}{9}}=\dfrac{2}{3}\)
\(\sqrt{\dfrac{36}{25}}=\dfrac{6}{5}\)
\(\sqrt{\dfrac{64}{49}}=\dfrac{8}{7}\)
\(\sqrt{\dfrac{169}{400}}=\dfrac{13}{20}\)
\(\sqrt{11\dfrac{1}{9}}=\sqrt{\dfrac{100}{9}}=\dfrac{10}{3}\)
\(\sqrt{1\dfrac{11}{25}}=\sqrt{\dfrac{36}{25}}=\dfrac{6}{5}\)
\(\sqrt{1\dfrac{13}{36}}=\sqrt{\dfrac{49}{36}}=\dfrac{7}{6}\)
Câu 2:
a) \(3.\sqrt{16}-4\sqrt{\dfrac{1}{4}}\)
\(=3.4-4.\dfrac{1}{2}\)
\(=4.\left(3-\dfrac{1}{2}\right)\)
\(=4.\dfrac{5}{2}\)
\(=10\)
b) \(-5\sqrt{\dfrac{9}{16}}+4\sqrt{0,36}-6\sqrt{0,09}\)
\(=-5.\dfrac{3}{4}+4.0,6-6.0,3\)
\(=\dfrac{-15}{4}+\dfrac{12}{5}-\dfrac{9}{5}\)
\(=\dfrac{-75+48-36}{20}=\dfrac{-63}{20}\)
c) \(2.\sqrt{9}-10.\sqrt{\dfrac{1}{25}}\)
\(=2.3-10.\dfrac{1}{5}\)
\(=6-2\)
\(=4\)
d) \(-3\sqrt{\dfrac{25}{16}}+5\sqrt{0,16}-7\sqrt{0,64}\)
\(=-3.\dfrac{5}{4}+5.0,4-7.0,8\)
\(=\dfrac{-15}{4}+2-\dfrac{28}{5}\)
\(=\dfrac{-75+40-28}{20}=\dfrac{-63}{20}\)
e) \(3\sqrt{25}-27\sqrt{\dfrac{4}{81}}\)
\(=3.5-27.\dfrac{2}{9}\)
\(=15-6\)
\(=9\)
f) \(-21\sqrt{\dfrac{100}{49}}+3\sqrt{0,04}-5\sqrt{0,25}\)
\(=-21.\dfrac{10}{7}+3.0,2-5.0,5\)
\(=-30+\dfrac{3}{5}-\dfrac{5}{2}\)
\(=\dfrac{-300+6-25}{10}=\dfrac{-319}{10}\)
h) \(5\sqrt{9}-4\sqrt{\dfrac{1}{16}}+6\sqrt{25}\)
\(=5.3-4.\dfrac{1}{4}+6.5\)
\(=15-1+30\)
\(=14+30\)
\(=44\)
g) \(10\sqrt{\dfrac{9}{25}}-14\sqrt{\dfrac{36}{49}}+24\sqrt{\dfrac{81}{64}}\)
\(=10.\dfrac{3}{5}-14.\dfrac{6}{7}+24.\dfrac{9}{8}\)
\(=6-12+27\)
\(=\left(-6\right)+27=21\)
Câu 3:
a) \(\sqrt{x}=7\)
\(=>x=49\)
b) \(\sqrt{x}=12\)
\(=>x=144\)
c) \(\sqrt{x}=15\)
\(=>x=225\)
d) \(\sqrt{x}=20\)
\(=>x=400\)
e) \(4\sqrt{x}=8\)
\(\sqrt{x}=8:4\)
\(\sqrt{x}=2\)
\(=>x=4\)
f) \(6\sqrt{x}=3\)
\(\sqrt{x}=\dfrac{3}{6}=\dfrac{1}{2}\)
\(=>x=\dfrac{1}{4}\)
g) \(\sqrt{x-1}=1\)
\(x-1=1\)
\(x=1+1\)
\(=>x=2\)
h) \(\sqrt{x+1}=2\)
\(x+1=4\)
\(x=4-1\)
\(=>x=3\)
i) \(\sqrt{x}-2=7\)
\(\sqrt{x}=7+2\)
\(\sqrt{x}=9\)
\(=>x=81\)
j) \(14-\sqrt{x}=12\)
\(\sqrt{x}=14-12\)
\(\sqrt{x}=2\)
\(=>x=4\)
k) \(12-\sqrt{x-1}=2\)
\(\sqrt{x-1}=12-2\)
\(\sqrt{x-1}=10\)
\(x-1=100\)
\(x=100+1\)
\(=>x=101\)
l) \(\sqrt{x+5}+10=20\)
\(\sqrt{x+5}=20-10\)
\(\sqrt{x+5}=10\)
\(x+5=100\)
\(x=100-5\)
\(=>x=95\)
# Wendy Dang
3:
a: ĐKXĐ: x>=0
\(\sqrt{x}=7\)
=>x=7^2=49
b: ĐKXĐ: x>=0
\(\sqrt{x}=12\)
=>x=12^2=144
c: ĐKXĐ: x>=0
\(\sqrt{x}=15\)
=>x=15^2=225
d: ĐKXĐ: x>=0
\(\sqrt{x}=20\)
=>x=20^2=400
e: ĐKXĐ: x>=0
\(4\sqrt{x}=8\)
=>\(\sqrt{x}=2\)
=>x=4
f: ĐKXĐ: x>=0
\(6\cdot\sqrt{x}=3\)
=>\(\sqrt{x}=\dfrac{3}{6}=\dfrac{1}{2}\)
=>x=1/4
g: ĐKXĐ: x>=1
\(\sqrt{x-1}=1\)
=>x-1=1
=>x=2
h: ĐKXĐ: x>=-1
\(\sqrt{x+1}=2\)
=>x+1=4
=>x=3
i: ĐKXĐ: x>=0
\(\sqrt{x}-2=7\)
=>\(\sqrt{x}=9\)
=>x=81
j: ĐKXĐ: x>=0
\(14-\sqrt{x}=12\)
=>\(\sqrt{x}=14-12=2\)
=>x=4
k: ĐKXĐ: x>=1
\(12-\sqrt{x-1}=2\)
=>\(\sqrt{x-1}=10\)
=>x-1=100
=>x=101
i: ĐKXĐ: x>=-5
\(\sqrt{x+5}+10=20\)
=>\(\sqrt{x+5}=10\)
=>x+5=100
=>x=95
\(...=\dfrac{152}{10}-\dfrac{15}{9}+\dfrac{48}{10}-\dfrac{4}{19}=\dfrac{76}{5}-\dfrac{5}{3}+\dfrac{24}{5}-\dfrac{4}{19}\)
\(=\dfrac{76}{5}-\dfrac{5}{3}+\dfrac{24}{5}-\dfrac{4}{19}=\dfrac{76}{5}+\dfrac{24}{5}-\dfrac{5}{3}-\dfrac{4}{19}\)
\(=\dfrac{100}{5}-\dfrac{5}{3}-\dfrac{4}{19}=20-\dfrac{5}{3}-\dfrac{4}{19}=\dfrac{20.57-5.19-4.3}{57}=\dfrac{1033}{57}\)
Bài 3:
a: nửa chu vi đáy là 19,2:2=9,6(m)
Chiều rộng đáy là \(9,6\cdot\dfrac{3}{8}=3.6\left(m\right)\)
Chiều dài đáy là:
9,6-3,6=6(m)
b: Thể tích của bể nước là:
\(3,6\cdot6\cdot1,5=5,4\cdot6=32,4\left(m^3\right)\)
c: Trong bể đó đã chứa:
\(3,6\cdot6\cdot0,7=15,12\left(m^3\right)\)
d: Thể tích phần còn lại chưa chứa nước là:
32,4-15,12=17,28m3=17280(lít)
Thời gian bể đầy là:
17280:640=27(giờ)
4. D
5. D
6. C
Ht
Câu 4 : D
Câu 5 : D
Câu 6 : C
~ Hok T ~