CM BĐT
a/ \(\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\) \(\forall a\)
b/ \(\dfrac{a^2+5}{\sqrt{a^2+1}}\ge4\) \(\forall a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Đúng do BĐT Cosi \(a+\dfrac{9}{a}\ge2.\sqrt{a.\dfrac{9}{a}}=6\)
II. Sai do \(\dfrac{a^2+5}{\sqrt{a^2+4}}=\sqrt{a^2+4}+\dfrac{1}{\sqrt{a^2+4}}\ge2+\dfrac{1}{a^2+4}>2\)
III. Đúng do BĐT Cosi \(\dfrac{\sqrt{ab}}{ab+1}\le\dfrac{\sqrt{ab}}{2\sqrt{ab}}=\dfrac{1}{2}\)
IV. Đúng do BĐT BSC \(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\ge\left(\sqrt{a}.\dfrac{1}{\sqrt{a}}+\sqrt{b}.\dfrac{1}{\sqrt{b}}\right)^2=4\)
Ta có:
\(4\le\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\le\dfrac{a+b}{2}+\dfrac{a+1}{2}+\dfrac{b+1}{2}+1\)
\(=a+b+2\)
\(\Leftrightarrow a+b\ge2\)
\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\ge2\)
Dấu \(=\) xảy ra khi \(a=b=1\).
a: \(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)
Lời giải
\(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\)
\(A=\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\)
\(A=\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right]\)
\(A=\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right]\)Thừa nhận cần c/m câu khác: \(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\ne0\)
\(\Rightarrow A\ge\left[\left(0\right)+2\right].\left[\left(0\right)+2\right].\left[\left(0\right)+2\right]=8\)
\(\Rightarrow A\ge8\forall_{a,b,c\ne0}\)=> dpcm
Đẳng thức khi \(\left\{{}\begin{matrix}\left|a\right|=1\\\left|b\right|=1\\\left|c\right|=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\pm1\\b=\pm1\\c=\pm1\end{matrix}\right.\) Không tin bạn thử a=b=c=-1<0 vào thử xem
Có một chút vần đề nha ĐK phải là a,b,c > 0 nhé
bài này ta sẽ chứng minh lần lượt \(a^2+\dfrac{1}{a^2};b^2+\dfrac{1}{b^2};c^2+\dfrac{1}{c^2}\)lớn hơn hoặc bằng 2
Ta sẽ giả sử
\(a^2+\dfrac{1}{a^2}\ge2\)(2)
\(\Leftrightarrow a^2-2+\dfrac{1}{a^2}\ge0\Leftrightarrow a^2-2a\times\dfrac{1}{a}+\dfrac{1}{a^2}\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{a}\right)^2\ge0\)(luôn đúng) (1)
BĐT (2) đúng suy ra BĐT (1) đúng
Dấu '=' xảy ra khi và chỉ khi \(a=\dfrac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)(*)
CMTT ta có : \(b^2+\dfrac{1}{b^2}\ge2\) (=) b = 1 (**)
\(c^2+\dfrac{1}{c^2}\ge2\) (=) c = 1 (***)
Nhân vế theo vế của (*) , (**) , (***) ta được
\(\left(a^2+\dfrac{1}{a^2}\right).\left(b^2+\dfrac{1}{b^2}\right).\left(c^2+\dfrac{1}{c^2}\right)\ge2^3=8\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 1
a ) \(x^2+4y^2+3z^2+14\ge2x+12y+6z\)
\(\Leftrightarrow x^2-2x+1+4y^2-12y+9+3z^2-6z+3+1\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+3\left(z-1\right)^2+1\ge0\)
\(\LeftrightarrowĐPCM.\)
b ) \(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\LeftrightarrowĐPCM.\)
a) \(x^2+4y^2+3z^2+14\ge2x+12y+6z\)
\(\Rightarrow x^2+4y^2+3z^2+14-2x-12y-6z\ge0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+3\left(z^2-2z+1\right)+1\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+3\left(z-1\right)^2\ge-1\)
Xem lại đề
b)
\(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow3a^2+3b^2+3c^2\ge\left(a+b+c\right)^2\)
\(\Rightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\) *Đúng*
Dấu "=" xảy ra khi: \(a=b=c\)
Thay \(a=b=c=0,25\)thì ta có:
\(\dfrac{1}{\sqrt{0,25}}+\dfrac{1}{\sqrt{0,25}}+\dfrac{2\sqrt{2}}{\sqrt{0,25}}\approx9,657\)
\(\dfrac{8}{0,25+0,25+0,25}\approx10,667\)
Vậy đề sai
a) \(\dfrac{a^2+2}{\sqrt{a^2+1}}=\dfrac{a^2+1+1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\dfrac{1}{\sqrt{a^2+1}}\ge2\)
b) Tương tự