K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

Kẻ AG⊥AF
Xét △ABE và △ADG có
\(\widehat{BAE}=\widehat{DAG}\) (cùng phụ góc DAF)
\(\widehat{ABE}=\widehat{ADG}=90^o\)
suy ra △ABE=△ADG
=> AE=AG(2 cạnh tương ứng)
Xét △AGF vuông tại A đường cao AD, Ta có:
\(\dfrac{1}{AD^2}=\dfrac{1}{AG^2}+\dfrac{1}{AF^2}\)
\(\Leftrightarrow\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

b: Qua A kẻ đường thẳng vuông góc với AP cắt BC tại N

Xét ΔABN và ΔADP có

góc B=góc D=90 độ

góc BAN=góc DAP

=>ΔABN đồng dạng với ΔADP

=>AB/AD=AN/AP=1/3

=>AN=1/3AP

ΔANM vuông tại N có AB là đường cao

nen 1/AB^2=1/AM^2+1/AN^2=1/AM^2+9/AP^2

20 tháng 10 2023

Từ O kẻ đường thẳng song song với AB hay như nào vậy bạn.

Xét hình thang ABCD có MN//AB//CD

nên AM/AD=BN/BC

Xét ΔADC có OM//DC

nên OM/DC=AM/AD

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC

=>OM/DC=ON/DC

=>OM=ON

=>O là trung điểm của MN

Xét ΔDAB có OM//AB

nên OM/AB=DM/DA

OM/AB+OM/DC

=AM/AD+ON/DC

=AM/AD+BN/BC

=1

=>1/AB+1/DC=1/OM=2/MN

a: Xét hình thang ABCD có MN//AB//CD

nên AM/MN=BN/NC

=>AM/AD=BN/BC(1)

Xét ΔADC có MO//DC

nên MO/DC=AM/AB(2)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(3)

Từ (1), (2) và (3) suy ra MO=ON(đpcm)

b:

Để \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\) thì \(\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)

MN=2ON=2OM

\(\dfrac{2OM}{AB}+\dfrac{2ON}{CD}=2\left(\dfrac{OM}{AB}+\dfrac{ON}{CD}\right)\)

mà OM/AB=DO/DB

và ON/CD=BO/BD

nên \(VT=2\cdot\left(\dfrac{DO}{DB}+\dfrac{BO}{DB}\right)=2\left(đpcm\right)\)

a: \(\widehat{ADE}+\widehat{EDC}=90^0\)

\(\widehat{KDC}+\widehat{EDC}=90^0\)

Do đó: \(\widehat{ADE}=\widehat{KDC}\)

Xét ΔADE vuông tại A và ΔCDK vuông tại C có

DA=DC

\(\widehat{ADE}=\widehat{KDC}\)

Do đó: ΔADE=ΔCDK

=>DE=DK

Xét ΔDEK có

\(\widehat{EDK}=90^0\)

DE=DK

Do đó: ΔDEK vuông cân tại D

b: Xét ΔDFK vuông tại D có DC là đường cao

nên \(\dfrac{1}{DK^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\)

=>\(\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\) không đổi

18 tháng 12 2016

giúp mình với ạ