Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABD có OE//AB =>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1)
Tam giác ABC có OF//AB =>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2)
Tam giác ABO có CD//AB =>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét)
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3)
Từ (1) (2) và (3) => OE/AB = OF/AB
=> OE = OF (điều phải chứng minh.)
Chúc bạn học giỏi nha.
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Bạn xem cách làm tại đây nhé!
"Hai đường chéo cắt nhau tại O và song song với đáy AB....". Câu này không đúng lắm. Bạn xem lại đề.
Trong ΔDAB, ta có: OM // AB (gt)
(Hệ quả định lí Ta-lét) (1)
Trong ΔCAB, ta có: ON // AB (gt)
(Hệ quả định lí Ta-lét) (2)
Trong ΔBCD, ta có: ON // CD (gt)
Suy ra: (định lí Ta-lét) (3)
Từ (1), (2) và (3) suy ra:
Vậy: OM = ON
Bạn tự vẽ hình nhá ! ;D
a, Ta có : OM // AB . Áp dụng hệ quả định lý Ta - lét : => \(\dfrac{OM}{AB}\)= \(\dfrac{OD}{DB}\)(1)
ON // AB => \(\dfrac{ON}{AB}\)= \(\dfrac{OC}{AC}\)(2)
AB // Cd => \(\dfrac{OD}{OB}\)= \(\dfrac{OC}{OA}\)=> \(\dfrac{OD}{OB+OD}\)= \(\dfrac{OC}{OA+OC}\)( T/ C tỉ lệ thức ) => \(\dfrac{OD}{DB}\)= \(\dfrac{OC}{AC}\)(3)
Từ (1), (2), (3) , suy ra : \(\dfrac{OM}{AB}\)=\(\dfrac{ON}{AB}\)=> OM = ON (đpcm )
Oài, câu b với câu c làm biếng quá, thứ lỗi cho mk nhé !
mk làm hơi tóm tắt tí có chỗ pn tự CM nhé
Lập luận để có ,
Lập luận để có
OM = ON
b, (1,5 điểm)
Xét để có (1), xét để có (2) Từ (1) và (2) OM.() |
0,5đ |
Chứng minh tương tự ON. |
|
từ đó có (OM + ON). |
|
b, (2 điểm)
, |
|
Chứng minh được |
|
Thay số để có 20082.20092 = (SAOD)2 SAOD = 2008.2009 |
|
Do đó SABCD= 20082 + 2.2008.2009 + 20092 = (2008 + 2009)2 = 40172 (đơn vị DT) |
|
a: Xét hình thang ABCD có MN//AB//CD
nên AM/MN=BN/NC
=>AM/AD=BN/BC(1)
Xét ΔADC có MO//DC
nên MO/DC=AM/AB(2)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(3)
Từ (1), (2) và (3) suy ra MO=ON(đpcm)
b:
Để \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\) thì \(\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)
MN=2ON=2OM
\(\dfrac{2OM}{AB}+\dfrac{2ON}{CD}=2\left(\dfrac{OM}{AB}+\dfrac{ON}{CD}\right)\)
mà OM/AB=DO/DB
và ON/CD=BO/BD
nên \(VT=2\cdot\left(\dfrac{DO}{DB}+\dfrac{BO}{DB}\right)=2\left(đpcm\right)\)