K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

Bạn tự vẽ hình nhá ! ;D

a, Ta có : OM // AB . Áp dụng hệ quả định lý Ta - lét : => \(\dfrac{OM}{AB}\)= \(\dfrac{OD}{DB}\)(1)

ON // AB => \(\dfrac{ON}{AB}\)= \(\dfrac{OC}{AC}\)(2)

AB // Cd => \(\dfrac{OD}{OB}\)= \(\dfrac{OC}{OA}\)=> \(\dfrac{OD}{OB+OD}\)= \(\dfrac{OC}{OA+OC}\)( T/ C tỉ lệ thức ) => \(\dfrac{OD}{DB}\)= \(\dfrac{OC}{AC}\)(3)

Từ (1), (2), (3) , suy ra : \(\dfrac{OM}{AB}\)=\(\dfrac{ON}{AB}\)=> OM = ON (đpcm )

Oài, câu b với câu c làm biếng quá, thứ lỗi cho mk nhé !

7 tháng 4 2017

mk làm hơi tóm tắt tí có chỗ pn tự CM nhé

Lập luận để có ,

Lập luận để có

OM = ON

b, (1,5 điểm)

Xét để có (1), xét để có (2)

Từ (1) và (2) OM.()

0,5đ

Chứng minh tương tự ON.

từ đó có (OM + ON).

b, (2 điểm)

,

Chứng minh được

Thay số để có 20082.20092 = (SAOD)2 SAOD = 2008.2009

Do đó SABCD= 20082 + 2.2008.2009 + 20092 = (2008 + 2009)2 = 40172 (đơn vị DT)

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

"Hai đường chéo cắt nhau tại O và song song với đáy AB....". Câu này không đúng lắm. Bạn xem lại đề.

26 tháng 2 2021

Câu này không có sai đề ạ!

20 tháng 3 2020

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bạn xem cách làm tại đây nhé!

a: Xét ΔADC có MO//DC
nên MO/DC=AM/AD(1)

Xét ΔBDC có ON//CD

nên ON/CD=BN/BC(2)

Xét hình thang ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1), (2) và (3) suy ra OM=ON

b: \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{Mn}\)

\(\Leftrightarrow\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)

\(\Leftrightarrow\dfrac{2\cdot OM}{AB}+\dfrac{2\cdot ON}{DC}=2\)

\(\Leftrightarrow\dfrac{2\cdot OD}{DB}+\dfrac{2\cdot OB}{DB}=2\)

\(\Leftrightarrow2\cdot\left(OD+OB\right)=2DB\)

=>DB=DB(luôn đúng)

20 tháng 1 2016

Tự nhiên lại lòi ra M và N, hic

20 tháng 1 2016

ak. mình nhầm..Cm OE=OF

23 tháng 2 2015

Bài 2 : a) Ta có : OM // AB =>  \(\frac{OM}{AB}=\frac{OD}{DB}\)( Hq talet) (1)

ON // AB => \(\frac{ON}{AB}=\frac{OC}{AC}\)(2)

AB // CD => \(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\)(3)

Từ (1), (2), (3) => OM/AB = ON/AB => OM = ON

b) Ta có : ON // CD => \(\frac{ON}{CD}=\frac{OB}{DB}\)(4)

Cộng từng vế (1) và (4) ta đc : \(\frac{OM}{AB}+\frac{ON}{CD}=\frac{OD}{DB}+\frac{OB}{DB}=\frac{OD+OB}{DB}=1\)

Suy ra : \(\frac{2OM}{AB}+\frac{2ON}{CD}=2\Rightarrow\frac{MN}{AB}+\frac{MN}{CD}=2\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)

c) Để mình tính đã nha

23 tháng 2 2015

Câu c bài 2 mình tính ra SABCD = 2008 + 2009 = 4017(đvdt) nhưng mà dài quá để giải sau nha

27 tháng 1 2016

Tam giác ABD có OE//AB =>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1) 
Tam giác ABC có OF//AB =>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2) 
Tam giác ABO có CD//AB =>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét) 
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3) 
Từ (1) (2) và (3) => OE/AB = OF/AB 
=> OE = OF (điều phải chứng minh.) 
Chúc bạn học giỏi nha.

5 tháng 12 2017

Trong ΔDAB, ta có: OM // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (1)

Trong ΔCAB, ta có: ON // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (2)

Trong ΔBCD, ta có: ON // CD (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí Ta-lét) (3)

Từ (1), (2) và (3) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy: OM = ON