Chứng minh rằng: Nếu \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\) thì \(a+b+c=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\left(1\right)\)
\(\Leftrightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\) (vì \(a+b+c=0\))
\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)
\(\Rightarrow dpcm\)
a) a2 + b2 + c2 = ab + ac + bc
=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
=> (a - b)2 + (a - c)2 + (b - c)2 = 0
Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0
=> a = b = c
b) a3 + b3 + c3 = 3abc
=> a3 + b3 + c3 - 3abc = 0
=> a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2 = 0
=> (a + b)3 + c3 - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0
=> a + b + c = 0
hoặc a2 + b2 + c2 = ab + bc + ac => a = b = c
Ta có : a + b + c = 0
( a + b + c )\(^2\) = 0
\(a^2+b^2+c^2+2ab+2bc+2ca=0\)
Nên : \(a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)
\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(ab+bc+ca\right)^2\)
\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\right)\)
\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+8ab^2c+8abc^2+8a^2bc\)
\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+8abc\left(b+c+a\right)\)
\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
Lại có : \(2\left(ab+bc+ca\right)^2\)
\(=2\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\right)\)
\(=2a^2b^2+2b^2c^2+2c^2a^2+4ab^2c+4abc^2+4a^2bc\)
\(=2a^2b^2+2b^2c^2+2c^2a^2+4abc\left(b+c+a\right)\)
\(=2a^2b^2+2b^2c^2+2c^2a^2\)
Vì : \(2a^2b^2+2b^2c^2+2c^2a^2=2a^2b^2+2b^2c^2=2c^2a^2\)
Vậy \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Í em mới lớp 7 thôi hả
Vậy mà giỏi đến mức được làm công tác viên òi
Tức là chị là chị của công tác viên hí hí
~ lớp 8 ~
Lớp 7 nhưng chịu quá nhiều tai tiếng ạ,vs như lúc đó ko thuộc hằng đẳng thức bình phương của một tổng,làm xàm thế là...
a+b+c = 0
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
=> \(a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
=> \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)
=> \(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)
=> \(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=2\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\) ( do a+b+c = 0 )
\(=2\left(ab+bc+ca\right)^2\) (HĐT)
Tại hạ đã biết là thánh học lớp 8
Cao :\_________________________________/