Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quá dài dòng ~.~
Có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^4}{a^3b}+\frac{b^4}{b^3c}+\frac{c^4}{c^3a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3b+b^3c+c^3a}=\frac{9\left(a^2+b^2+c^2\right)^2}{9\left(a^3b+b^3c+c^3a\right)}\)
Cần CM Bđt:
\(\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)\ge9\left(a^3b+b^3c+c^3a\right)\)
hay: \(\left(a^2+b^2+c^2\right)^2+2\left(ab+bc+ac\right)\left(a^2+b^2+c^2\right)\ge9\left(a^3b+b^3c+c^3a\right)\)
Sử dụng Bđt phụ: \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^3b+b^3c+c^3a\right)\)
Thu gọn bất đẳng thức cần CM còn: \(\left(ab+bc+ac\right)\left(a^2+b^2+c^2\right)\ge3\left(a^3b+b^3c+c^3a\right)\)
Cm tương đương là xong.
Như vậy: \(VT\ge\frac{9\left(a^2+b^2+c^2\right)^2}{9\left(a^3b+b^3c+c^3a\right)}\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)}=VP\)
End./.
a ) \(A=\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}=\frac{ax\left(a-x\right)\left(a+x\right)}{3\left(a-x\right)\left(a+x\right)}=\frac{ax}{3}\)
Thay \(a=\frac{1}{2};x=-3\), ta có :
\(A=\frac{\frac{1}{2}.-3}{3}=-\frac{1}{2}\)
b ) \(B=\frac{\left(ab+bc+cd+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}=\frac{\left[\left(ab+ad\right)+\left(bc+cd\right)\right]abcd}{ca+cb+da+db+ba-bd-ca+cd}\)
\(=\frac{\left[a\left(b+d\right)+c\left(b+d\right)\right]abcd}{ba+da+cb+cd}=\frac{\left(b+d\right)\left(a+c\right)abcd}{\left(b+d\right)\left(a+c\right)}=abcd\)
Thay \(a=-3;b=-4;c=2;d=3\), ta có :
\(B=\left(-3\right).\left(-4\right).2.3=72\)
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
Thay:
\(\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
=> đpcm
P/s: Bài toán này khá hay đó !!
Ta có : \(a\left(\frac{1}{b}+\frac{1}{c}\right)=b\left(\frac{1}{a}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{a^2c+a^2b}{abc}=\frac{b^2c+ab^2}{abc}=\frac{c^2b+c^2a}{abc}\)
Mà : \(a,b,c>0\)
\(\Rightarrow a^2c+a^2b=b^2c+ab^2=c^2b+c^2a\)
+) Xét : \(a^2c+a^2b=b^2c+ab^2\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ca+cb\right)=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\) (1)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
+) Xét \(b^2c+ab^2=c^2b+c^2a\)
\(\Leftrightarrow bc\left(b-c\right)+a\left(b^2-c^2\right)=0\)
\(\Leftrightarrow\left(b-c\right)\left(bc+ab+ac\right)=0\)
\(\Leftrightarrow b-c=0\Leftrightarrow b=c\)(2)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
Từ (1) và (2) \(\Rightarrow a=b=c\) (đpcm)
Í em mới lớp 7 thôi hả
Vậy mà giỏi đến mức được làm công tác viên òi
Tức là chị là chị của công tác viên hí hí
~ lớp 8 ~
Lớp 7 nhưng chịu quá nhiều tai tiếng ạ,vs như lúc đó ko thuộc hằng đẳng thức bình phương của một tổng,làm xàm thế là...