bài 1 cho biểu thức
A=\(\dfrac{4y+2x}{5y-7x}\)+\(\dfrac{3x-2y}{10y-4x}\)
Tính gtri biểu thức biết 3x^2-7xy+4y^2=0
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2+4y2=7xy
<=> 3x2-3xy+4y2-4xy=0
<=> 3x(x-y)-4y(x-y)=0
<=> (3x-4y)(x-y)=0
<=> 3x-4y=0 hoặc x-y=0
<=> 3x=4y hoặc x=y
<=> y = \(\frac{3}{4}\)x hoặc x=y
+) y = \(\frac{3}{4}\)x, ta có:
F = \(\frac{4.\frac{3}{4}x+2x}{5.\frac{3}{4}x-7x}+\)\(\frac{3x-2.\frac{3}{4}x}{10.\frac{3}{4}x-4x}\)
F = \(\frac{5x}{-\frac{13}{4}x}+\frac{\frac{3}{2}x}{\frac{7}{2}x}\)
F = \(-\frac{20}{13}+\frac{3}{7}=-\frac{101}{91}\)
+) x = y, ta có:
F = \(\frac{4x+2x}{5x-7x}+\frac{3x-2x}{10x-4x}\)
F = \(\frac{6x}{-2x}+\frac{1x}{6x}=-3+\frac{1}{6}=-\frac{17}{6}\)
Từ \(3x^2+4y^2=7xy\Rightarrow3x^2+4y^2-7xy=0\)
\(\Rightarrow3x^2-4xy-3xy+4y^2=0\)
\(\Rightarrow x\left(3x-4y\right)-y\left(3x-4y\right)=0\)
\(\Rightarrow\left(x-y\right)\left(3x-4y\right)=0\)\(\Rightarrow\left[\begin{matrix}x=y\\x=\frac{4y}{3}\end{matrix}\right.\)
*)Xét \(x=y\) ta có \(F=\frac{4y+2y}{5y-7y}+\frac{3y-2y}{10y-4y}=\frac{6y}{-2y}+\frac{y}{6y}=-3+\frac{1}{6}=-\frac{17}{6}\)
*)Xét \(x=\frac{4y}{3}\) ta có \(F=\frac{4y+2\cdot\frac{4y}{3}}{5y-7\cdot\frac{4y}{3}}+\frac{3\cdot\frac{4y}{3}-2y}{10y-4\cdot\frac{4y}{3}}=\frac{4y+\frac{8y}{3}}{5y-\frac{28y}{3}}+\frac{4y-2y}{10y-\frac{16y}{3}}=\frac{-20}{13}+\frac{3}{7}=\frac{-101}{91}\)
a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)
b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)
a, \(A=-4x^5y^3+x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
\(=2x^2y^3z^2-2y^4\)
Bậc của đa thức A là 7
Vậy...
b, Ta có: \(B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
\(\Rightarrow B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=2x^2y^3z^2-2y^4\)
\(\Rightarrow B=2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3\)
\(=4x^2y^3z^2-\dfrac{8}{3}y^4+\dfrac{1}{5}x^4y^3\)
Vậy...
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)
Thay (1) vào P
=> P = \(\dfrac{3k+2.4k+3.5k}{2.5k+3.4k+4.5k}+\dfrac{2.5k+3.4k+4.5k}{3.3k+4.4k+5.5k}\) + \(\dfrac{3.3k+4.4k+5.5k}{4.3k+5.4k+6.5k}\)
=> P = \(\dfrac{26k}{42k}+\dfrac{42k}{50k}\) + \(\dfrac{50k}{62k}\)
=> P = \(\dfrac{13}{21}+\dfrac{21}{25}+\dfrac{25}{31}\approx2,265499232\)
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\\ \Rightarrow\dfrac{3xz-2yz}{4z}=\dfrac{2yz-4xy}{3y}=\dfrac{4xy-3xz}{2x}\\ \Rightarrow\dfrac{3xz-2yz}{4z}=\dfrac{2yz-4xy}{3y}=\dfrac{4xy-3xz}{2x}=\dfrac{\left(3xz-3xz\right)+\left(2yz-2yz\right)+\left(4xy-4xy\right)}{4z+3y+2x}=0\\ \Rightarrow3x-2y=2z-4x=4y-3z=0\\ \Rightarrow3x=2y;2z=4x;4y=3z\)
3x=2y => \(\dfrac{x}{2}=\dfrac{y}{3}\)
4x=2z\(\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\)
\(\dfrac{\Rightarrow x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\\ \Rightarrow x=2k;y=3k;z=4k\)
Thế dô A ; tự tinh !!
Ta có : 3x2 - 7xy + 4y2 = 0
=> 3x2 - 3xy - 4xy + 4y2 = 0
=> 3x( x - y) - 4y( x - y) = 0
=> ( x - y)( 3x - 4y) = 0
=> x = y ; 3x = 4y
Thay : x = y ; 3x = 4y vào phân thức trên ta có:
\(A=\dfrac{4y+2x}{5y-7x}+\dfrac{3x-2y}{10y-4x}\)
\(A=\dfrac{3x+2x}{5x-7x}+\dfrac{4y-2y}{10x-4x}\)
\(A=\dfrac{5x}{-2x}+\dfrac{2y}{6x}=\dfrac{5}{-2}+\dfrac{1}{3}=\dfrac{-13}{6}\)