Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3x2 - 7xy + 4y2 = 0
=> 3x2 - 3xy - 4xy + 4y2 = 0
=> 3x( x - y) - 4y( x - y) = 0
=> ( x - y)( 3x - 4y) = 0
=> x = y ; 3x = 4y
Thay : x = y ; 3x = 4y vào phân thức trên ta có:
\(A=\dfrac{4y+2x}{5y-7x}+\dfrac{3x-2y}{10y-4x}\)
\(A=\dfrac{3x+2x}{5x-7x}+\dfrac{4y-2y}{10x-4x}\)
\(A=\dfrac{5x}{-2x}+\dfrac{2y}{6x}=\dfrac{5}{-2}+\dfrac{1}{3}=\dfrac{-13}{6}\)
a) \(xy+3x-7y-21\)
\(\Leftrightarrow\left(xy+3x\right)-\left(7y+21\right)\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)\)
b) \(2xy-15-6x+5y\)
\(\Leftrightarrow\left(2xy-6x\right)-\left(15-5y\right)\)
\(\Leftrightarrow x\left(2y-6\right)-5\left(3-y\right)\)
\(\Leftrightarrow2x\left(y-3\right)+5\left(y-3\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(y-3\right)\)
2:
a: \(=\left(2x^2-xy\right)+\left(2xz-yz\right)\)
\(=x\left(2x-y\right)+z\left(x-2y\right)=\left(x-2y\right)\left(x+z\right)\)
b: \(=\left(x^2-4y^2\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-1\right)\)
c: \(=\left(y^2+10y+25\right)-9z^2\)
\(=\left(y+5\right)^2-\left(3z\right)^2\)
\(=\left(y+5+3z\right)\left(y+5-3z\right)\)
d: \(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)
\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)
1:
a: \(x\left(3-4x\right)+5\left(3-4x\right)=\left(3-4x\right)\left(x+5\right)\)
b: \(2y\left(5y-6\right)-4\left(6-5y\right)\)
\(=2y\left(5y-6\right)+4\left(5y-6\right)\)
\(=2\left(5y-6\right)\left(y+2\right)\)
c: \(=27\left(x-2\right)^3-3x\left(x-2\right)^2\)
\(=3\left(x-2\right)^2\cdot\left[9\left(x-2\right)-x\right]\)
\(=3\left(x-2\right)^2\left(8x-18\right)=6\left(x-2\right)^2\cdot\left(4x-9\right)\)
d: \(=6y\left(x-y\right)\left(x+y\right)-8y\left(x+y\right)^2\)
\(=2y\left(x+y\right)\left[3\left(x-y\right)-4\left(x+y\right)\right]\)
\(=2y\left(x+y\right)\left(3x-3y-4x-4y\right)\)
\(=2y\left(x+y\right)\left(-x-7y\right)\)
Bài 1
a) x(3 - 4x) + 5(3 - 4x)
= (3 - 4x)(x + 5)
b) 2y(5y - 6) - 4(6- 5y)
= 2y(5y - 6) + 4(5y - 6)
= (5y - 6)(2y + 4)
= 2(5y - 6)(y + 2)
c) 27(x - 2)³ - 3x(2 - x)²
= 27(x - 2)³ - 3x(x - 2)²
= 3(x - 2)²[9(x - 2) - x]
= 3(x - 2)²(9x - 18 - x)
= 3(x - 2)²(8x - 18)
= 6(x - 2)²(4x - 9)
d) 6y(x² - y²) - 8y(x + y)²
= 6y(x - y)(x + y) - 8y(x + y)²
= 2y(x + y)[3(x - y) - 4(x + y)]
= 2y(x + y)(3x - 3y - 4x - 4y)
= 2y(x + y)(-x - 7y)
= -2y(x + y)(x + 7y)
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
a: =>3M+2x^4y^4=x^4y^4
=>3M=-x^4y^4
=>M=-1/3*x^4y^4
b: x^2-2M=3x^2
=>2M=-2x^2
=>M=-x^2
c: =>M=-x^2y^3-3x^2y^3=-4x^2y^3
d: =>M=7x^2y^2-3x^2y^2=4x^2y^2
a) \(39x-39y=39\left(x-y\right)\)
b) \(3x^2\left(x-3y\right)-5y\left(3y-x\right)=3x^2\left(x-3y\right)+5y\left(x-3y\right)\)
\(=\left(3x^2+5x\right)\left(x-3y\right)=x\left(3x+5\right)\left(x-3y\right)\)
c) \(16x^2+24xy+9y^2=\left(4x\right)^2+4x.3y.2+\left(3y\right)^2=\left(4x+3y\right)^2\)
d) \(25x^2-\frac{1}{25y^2}=\left(5x\right)^2-\left(\frac{1}{5y}\right)^2=\left(5x-\frac{1}{5y}\right)\left(5x+\frac{1}{5y}\right)\)
e) \(7x^2-7xy+5x-5y=7x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(7x+5\right)\)
f) \(5x^2-45y^2-30y-5=5\left(x^2-9y^2-6y-1\right)=5\left[x^2-\left(9y^2+6y+1\right)\right]\)
\(=5\left[x^2-\left(3y+1\right)^2\right]=5\left(x-3y-1\right)\left(x+3y+1\right)\)
g) \(x^2+2x+1-y^2-4y-1=\left(x^2+2x+1\right)-\left(y^2+2y+1\right)\) ( Chắc đề vậy :v )
\(=\left(x+1\right)^2-\left(y+1\right)^2=\left(x+1-y-1\right)\left(x+1+y+1\right)=\left(x-y\right)\left(x+y+2\right)\)
h) \(4x^2+8x-5=4x^2-2x+10x-5=2x\left(2x-1\right)+5\left(2x-1\right)\)
\(=\left(2x-1\right)\left(2x+5\right)\)
a) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) \(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
c) \(x^2+1+2x-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
f) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
a: =3x(x-y)-5(x-y)
=(x-y)(3x-5)
b: \(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
d:
Sửa đề: x^2+4x-2xy-4y+y^2
=x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
e: =x(x^2-2x+1)
=x(x-1)^2
f: =2(x^2+2x+1-y^2)
=2[(x+1)^2-y^2]
=2(x+1+y)(x+1-y)
3x2+4y2=7xy
<=> 3x2-3xy+4y2-4xy=0
<=> 3x(x-y)-4y(x-y)=0
<=> (3x-4y)(x-y)=0
<=> 3x-4y=0 hoặc x-y=0
<=> 3x=4y hoặc x=y
<=> y = \(\frac{3}{4}\)x hoặc x=y
+) y = \(\frac{3}{4}\)x, ta có:
F = \(\frac{4.\frac{3}{4}x+2x}{5.\frac{3}{4}x-7x}+\)\(\frac{3x-2.\frac{3}{4}x}{10.\frac{3}{4}x-4x}\)
F = \(\frac{5x}{-\frac{13}{4}x}+\frac{\frac{3}{2}x}{\frac{7}{2}x}\)
F = \(-\frac{20}{13}+\frac{3}{7}=-\frac{101}{91}\)
+) x = y, ta có:
F = \(\frac{4x+2x}{5x-7x}+\frac{3x-2x}{10x-4x}\)
F = \(\frac{6x}{-2x}+\frac{1x}{6x}=-3+\frac{1}{6}=-\frac{17}{6}\)
Từ \(3x^2+4y^2=7xy\Rightarrow3x^2+4y^2-7xy=0\)
\(\Rightarrow3x^2-4xy-3xy+4y^2=0\)
\(\Rightarrow x\left(3x-4y\right)-y\left(3x-4y\right)=0\)
\(\Rightarrow\left(x-y\right)\left(3x-4y\right)=0\)\(\Rightarrow\left[\begin{matrix}x=y\\x=\frac{4y}{3}\end{matrix}\right.\)
*)Xét \(x=y\) ta có \(F=\frac{4y+2y}{5y-7y}+\frac{3y-2y}{10y-4y}=\frac{6y}{-2y}+\frac{y}{6y}=-3+\frac{1}{6}=-\frac{17}{6}\)
*)Xét \(x=\frac{4y}{3}\) ta có \(F=\frac{4y+2\cdot\frac{4y}{3}}{5y-7\cdot\frac{4y}{3}}+\frac{3\cdot\frac{4y}{3}-2y}{10y-4\cdot\frac{4y}{3}}=\frac{4y+\frac{8y}{3}}{5y-\frac{28y}{3}}+\frac{4y-2y}{10y-\frac{16y}{3}}=\frac{-20}{13}+\frac{3}{7}=\frac{-101}{91}\)