K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Ta biết công thức tính tổng các số tự nhiên từ $1$ đến $n$

\(1+2+3....+n=\frac{n(n+1)}{2}\Rightarrow \frac{1}{1+2+...+n}=\frac{2}{n(n+1)}\)

Do đó:

\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2011.2012}\)

\(S=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2011.2012}\right)\)

\(S=2\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2012-2011}{2011.2012}\right)\)

\(S=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}\right)\)

\(S=2\left(1-\frac{1}{2012}\right)=\frac{2011}{1006}\)

12 tháng 12 2021

S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)

\(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)

30 tháng 4

S=P nhé

 

28 tháng 2 2023

Nhận xét nè: ở mẫu số tại các phân số có tử số + mẫu số = 2012. Vì vậy mục tiêu là tạo ra con 2012 ở các phân số của mẫu số. E xử con tử số ở phân số mẫu số sao cho ra con 2012 là được =))

S   = 1/3 + 1/3^2 + 1/3^3 + 1/3^4 + ... + 1/3^99 + 1/3^100

3S = 1 +1/3 +1/3^2 +1/3^3 + ... + 1/3^98 +1/3^99

3S - S = ( 1 + 1/3 + 1/3^2 +1/^3 + ... + 1/3^98 +1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + 1/3^4 +... + 1/3^99 + 1/3^100 )

2S = 1 - 1/3^100

S   = (1 - 1/3^100). 1/2

6 tháng 3 2018

a) Giải

Ta có: \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}+\dfrac{1}{2^{2013}}\)

\(\Rightarrow2S=\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{2012}}+\dfrac{2}{2^{2013}}\)

\(2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)

\(\Rightarrow2S-S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2012}}-\dfrac{1}{2^{2013}}\)

\(\Rightarrow S=1-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=\dfrac{2^{2013}-1}{2^{2013}}\)

6 tháng 3 2018

b) Giải

Từ \(A=\dfrac{2011^{2012}+1}{2011^{2013}+1}\)

\(\Rightarrow2011A=\dfrac{2011^{2013}+20111}{2011^{2013}+1}=\dfrac{2011^{2013}+1+2010}{2011^{2013}+1}=1+\dfrac{2010}{2011^{2013}+1}\)

Từ \(B=\dfrac{2011^{2013}+1}{2011^{2014}+1}\)

\(\Rightarrow2011B=\dfrac{2011^{2014}+2011}{2011^{2014}+1}=\dfrac{2011^{2014}+1+2010}{2011^{2014}+1}=1+\dfrac{2010}{2011^{2014}+1}\)

Vì 20112013 + 1 < 20112014 + 1 và 2010 > 0

\(\Rightarrow\dfrac{2010}{2011^{2013}+1}>\dfrac{2010}{2011^{2014}+1}\)

\(\Rightarrow2011A>2011B\)

\(\Rightarrow A>B\)

Vậy A > B.

11 tháng 5 2022

ơi

11 tháng 5 2022

17 tháng 3 2022

1)\(\dfrac{-5}{2}:\dfrac{1}{4}\) = \(\dfrac{-5}{2}\) x \(\dfrac{4}{1}\) = \(\dfrac{-20}{2}\)

17 tháng 3 2022

1) \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)\) \(=\dfrac{-5}{2}:\dfrac{1}{4}=-10\)

 

12 tháng 4 2022

2 điểm!?

12 tháng 4 2022

thi hay sao?