K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Ta biết công thức tính tổng các số tự nhiên từ $1$ đến $n$

\(1+2+3....+n=\frac{n(n+1)}{2}\Rightarrow \frac{1}{1+2+...+n}=\frac{2}{n(n+1)}\)

Do đó:

\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2011.2012}\)

\(S=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2011.2012}\right)\)

\(S=2\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2012-2011}{2011.2012}\right)\)

\(S=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}\right)\)

\(S=2\left(1-\frac{1}{2012}\right)=\frac{2011}{1006}\)

12 tháng 12 2021

S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)

\(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)

30 tháng 4

S=P nhé

 

28 tháng 2 2023

Nhận xét nè: ở mẫu số tại các phân số có tử số + mẫu số = 2012. Vì vậy mục tiêu là tạo ra con 2012 ở các phân số của mẫu số. E xử con tử số ở phân số mẫu số sao cho ra con 2012 là được =))

24 tháng 3 2017

Đặt B= \(\dfrac{2011}{1}+\dfrac{2010}{2}+.......+\dfrac{1}{2011}\)

Cộng 1 vào ta được:

B=(\(\dfrac{2012}{1}+\dfrac{2012}{2}+.......+\dfrac{2012}{2011}\)+\(\dfrac{2012}{2012}\)) -2012

-> B= 2012 (\(\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2011}\)+\(\dfrac{1}{2012}\)) -2012+\(\dfrac{2012}{1}\)

Thay vào P ta được:

P=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}}{2012\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}\right)}\)

-> P= \(\dfrac{1}{2012}\)

có chỗ nào chưa hiểu hỏi mình nha!

6 tháng 10 2017

Bước 1: bạn cộng 1 vào từng hạng tử của mẫu:

\(\dfrac{2011}{1}+1\); \(\dfrac{2012}{2}+1\);....

Bước 2: Tính ra ta được:

\(\dfrac{2011}{1}+1\)=\(\dfrac{2012}{1}\); ....

Vì cộng một vào từng hạng tử và cộng thêm một vào cuối biểu thức (2012 hạng tử) nên phải từ đi 2012 để vẫn giữ nguyên giá trị biểu thức.

Bước 3: thấy trong ngoặc chung 2012 nên lấy 2012 ra và chuyển \(\dfrac{2012}{1}\)ra cuối cùng nên ta được biểu thức trên. Tính và được kết quả cuối cùng.

bước 4: thay vào P ta được: P=\(\dfrac{1}{2012}\)

vì giải thích trên máy nên hơi khó hiểu, bạn chịu khó nha~

5 tháng 10 2017

\(D=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}}\)

Ta có mẫu của phân số trên là :

\(\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}\)

\(=\left(\dfrac{2010}{2}+1\right)+\left(\dfrac{2009}{3}+1\right)+...+\left(\dfrac{1}{2011}+1\right)+1\)

=\(\dfrac{2012}{2}+\dfrac{2012}{3}+\dfrac{2012}{4}+...+\dfrac{2012}{2011}+\dfrac{2012}{2012}\)

=\(2012\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}\right)\)

Từ đó suy ra :

\(D=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{2012\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)}=\dfrac{1}{2012}\)

Vậy \(D=\dfrac{1}{2012}\)

Nhớ tịk cho mink nhé

1 tháng 12 2017

Chữa lại đề.Bạn xem lại đề xem đúng chưa nhé!

\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)

\(D=\dfrac{1.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}{5.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}-\dfrac{2.\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}{3\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}\)

\(D=\dfrac{1}{5}-\dfrac{2}{3}\)

\(D=-\dfrac{7}{15}\)

Cái này học lâu rồi.Bạn xem lại xem mình làm đúng chưa nhé!

1 tháng 12 2017

làm H đi tui cx đang cằn

19 tháng 7 2018

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}=P\)

Vậy \(S=P\)

25 tháng 3 2017

Ta có: \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(\Rightarrow P-S=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\right)=0\)

\(\Rightarrow\left(P-S\right)^{2013}=0^{2013}=0\)

Vậy \(\left(P-S\right)^{2013}=0\)

30 tháng 4 2018

Hay quá

22 tháng 2 2018

B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2012}}\)

=>3B=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2011}}\)

=>3B-B=2B=1-\(\dfrac{1}{3^{2012}}\)

=>B=\(\dfrac{1}{2}-\dfrac{1}{2.3^{20112}}\)<1/2

vậy........

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{\left(\dfrac{2010}{2}+1\right)+\left(\dfrac{2009}{3}+1\right)+...+\left(\dfrac{1}{2011}+1\right)+1}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{\dfrac{2012}{2}+\dfrac{2012}{3}+...+\dfrac{2012}{2011}+\dfrac{2012}{2012}}=\dfrac{1}{2012}\)