K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

Câu hỏi của không cần biết - Toán lớp 8 - Học toán với OnlineMath

10 tháng 1 2019

có thật là của lp 7 ko ak

Bài làm

\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\Rightarrow a^2.c+b^2.a+c^2.b\)

\(=b^2.c+c^2.a+a^2.b\)

\(\Leftrightarrow a^2.\left(c-b\right)+a.\left(b^2-c^2\right)+b.c.\left(c-d\right)=0\)

\(\Leftrightarrow a^2.\left(c-b\right)-a\left(c-b\right).\left(c+b\right)+b.c.\left(c-b\right)=0\)

\(\Leftrightarrow\left(c-b\right).\left(a^2-a.c-a.b+b.c\right)=0\)

\(\Leftrightarrow\left(c-b\right).a.\left(a-c\right)-b.\left(a-c\right)=0\)

\(\Leftrightarrow\left(c-d\right).\left(a-c\right).\left(a-b\right)=0\)

=> \(a=b\) hoặc b = c hoặc a = c (ĐPCM)

28 tháng 2 2021

`1/a+1/b+1/c=1/(a+b+c)`

`<=>(a+b)/(ab)+(a+b)/(c(a+b+c))=0`

`<=>(a+b)(ab+ac+bc+c^2)=0`

`<=>(a+b)(a+c)(b+c)=0`

`=>` $\left[ \begin{array}{l}a=-b\\b=-c\\c=-a\end{array} \right.$

`=>` PT luôn tồn tại 2 số đối nhau

9 tháng 11 2017

k cần giải nx nhá ~ mk giải đc rồi @

10 tháng 1 2022

Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm

30 tháng 12 2018

Đặt \(\dfrac{a^3}{c}=x;\dfrac{b^3}{a}=y;\dfrac{c^3}{b}=z\)

Suy ra \(\dfrac{a^3}{c}.\dfrac{b^3}{a}.\dfrac{c^3}{b}=xyz\Leftrightarrow xyz=\left(abc\right)^2=1\)

Vậy ta có \(\dfrac{c}{a^3}=\dfrac{1}{x};\dfrac{a}{b^3}=\dfrac{1}{y};\dfrac{b}{c^3}=\dfrac{1}{z}\)

Theo đề bài ta có \(x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{xy+xz+yz}{xyz}=xy+xz+yz\)

Ta lại có \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=xyz-xz-yz-xy+x+y+z-1=1-\left(xz+yz+xy\right)+x+y+z-1=-\left(x+y+z\right)+\left(x+y+z\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\y-1=0\\z-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\)

_ x=1\(\Leftrightarrow\dfrac{a^3}{c}=1\Leftrightarrow a^3=c\left(1\right)\)

Tương tự:

y=1\(\Leftrightarrow\)\(b^3=a\)(2)

z=1\(\Leftrightarrow c^3=b\)(3)

Từ (1),(2),(3)

Vậy trong 3 số a,b,c luôn tồn tại một số là lập phương của một trong 2 số còn lại

13 tháng 4 2017

Câu hỏi của Linh Suzu - Toán lớp 7 | Học trực tuyến, nhớ tìm trước khi hỏi, lần sau t ko tìm đâu

25 tháng 1 2017

Giả sử trong 4 số a;b;c;d không tồn tại 2 số bằng nhau

Không mất tính tổng quát ta giả sử a < b < c < d

=> a2 < b2 < c2 < d2 (do a;b;c;d nguyên dương)

=> \(\frac{1}{a^2}>\frac{1}{b^2}>\frac{1}{c^2}>\frac{1}{d^2}\)

\(\Rightarrow\frac{4}{a^2}>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)

=> a2 < 4

=> a < 2 (1)

Lại có: \(\frac{1}{a^2}\)< 1 (theo đê bai)

=> a2 > 1

=> a > 1 (do a nguyên dương) (2)

Từ (1) và (2) => 1 < a < 2, mâu thuẫn với đề là a nguyên dương

Như vậy trong 4 số đã cho luôn tồn tại ít nhất 2 số bằng nhau (đpcm)