Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Linh Suzu - Toán lớp 7 | Học trực tuyến, nhớ tìm trước khi hỏi, lần sau t ko tìm đâu
Giả sử a,b,c,d khác nhau ta có
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\)(trái với giả thiết)
=> điều giả sử là sai => ĐPCM
Giả sử a,b,c,d khác nhau, thì ta sẽ có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\) (trái với giả thiết)
= > điều giả sử sai = > ĐPCM
Giả sử trong 4 số a;b;c;d không tồn tại 2 số bằng nhau
Không mất tính tổng quát ta giả sử a < b < c < d
=> a2 < b2 < c2 < d2 (do a;b;c;d nguyên dương)
=> \(\frac{1}{a^2}>\frac{1}{b^2}>\frac{1}{c^2}>\frac{1}{d^2}\)
\(\Rightarrow\frac{4}{a^2}>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
=> a2 < 4
=> a < 2 (1)
Lại có: \(\frac{1}{a^2}\)< 1 (theo đê bai)
=> a2 > 1
=> a > 1 (do a nguyên dương) (2)
Từ (1) và (2) => 1 < a < 2, mâu thuẫn với đề là a nguyên dương
Như vậy trong 4 số đã cho luôn tồn tại ít nhất 2 số bằng nhau (đpcm)