Tìm x , biết: a) 27. 3^x = 243 b) (x-5)^3 = 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)
2^x+2^x+3=144
2^x+2^x.2^3=144
2^x(1+2^3)=144
2^x.9=144
2^x=16
2^x=2^4=>x=4
`#3107.101107`
a)
\(27< 3^x< 243\\ \Rightarrow3^3< 3^x< 3^5\\ \Rightarrow3< x< 5\\ \Rightarrow x=4\)
Vậy, `x = 4`
b)
\(2^x+2^{x+1}+2^{x+2}=56?\\ \Rightarrow2^x+2^x\cdot2+2^x\cdot4=56\\ \Rightarrow2^x\cdot\left(1+2+4\right)=56\\ \Rightarrow2^x\cdot7=56\\ \Rightarrow2^x=8\\ \Rightarrow2^x=2^3\\ \Rightarrow x=3\)
Vậy, `x = 3`
c)
\(3^x+3^{x+2}=810\\ \Rightarrow3^x+3^x\cdot9=810\\ \Rightarrow3^x\cdot\left(1+9\right)=810\\ \Rightarrow3^x\cdot10=810\\ \Rightarrow3^x=81\\ \Rightarrow3^x=3^4\\ \Rightarrow x=4\)
Vậy, `x = 4.`
a) \(27< 3^x< 243\)
\(\Rightarrow3^3< 3^x< 3^5\)
\(\Rightarrow3< x< 5\)
c) \(3^x+3^{x+2}=810\)
\(\Rightarrow3^x\left(1+3^2\right)=810\)
\(\Rightarrow3^x.10=810\)
\(\Rightarrow3^x=810:10\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
a) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b) \(27.3^x=243\)
\(3^x=243:27\)
\(3^x=9\)
\(\Rightarrow3^x=3^2\)
\(\Rightarrow x=2\)
c) \(3^x+25=26.2^2+2.3^0\)
\(3^x+25=104+2\)
\(3^x+25=106\)
\(3^x=106-25\)
\(3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
d) \(\left(7x-11\right)^3=2^5.5^2+200\)
\(\left(7x-11\right)^3=800+200\)
\(\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(7x=10+11\)
\(7x=21\)
\(x=21:7\)
\(x=3\)
e) \(3^x.3=27\)
\(3^x=27:3\)
\(3^x=9\)
\(\Rightarrow3^x=3^2\)
\(\Rightarrow x=2\)
a) \(2^x-15=17\)
\(\Leftrightarrow2^x=17+15\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
Vậy x = 5
b) \(27.3^x=243\)
\(\Leftrightarrow3^x=243:27\)
\(\Leftrightarrow3^x=9\)
\(\Leftrightarrow3^x=3^2\)
\(\Leftrightarrow x=2\)
Vậy x = 2
c) \(\left(7x-11\right)^3=2^5.5^2+200\)
\(\Leftrightarrow\left(7x-11\right)^3=800+200\)
\(\Leftrightarrow\left(7x-11\right)^3=1000\)
\(\Leftrightarrow\left(7x-11\right)^3=10^3\)
\(\Leftrightarrow7x-11=10\)
\(\Leftrightarrow7x=10+11\)
\(\Leftrightarrow7x=21\)
\(\Leftrightarrow x=21:7\)
\(\Leftrightarrow x=3\)
Vậy x = 3
d) \(3^x.3=27\)
\(\Leftrightarrow3^x=27:3\)
\(\Leftrightarrow3^x=9\)
\(\Leftrightarrow3^x=3^2\)
\(\Leftrightarrow x=2\)
Vậy x = 2
_Chúc bạn học tốt_
Bài 4:
\(a,2^{30}=\left(2^3\right)^{10}=8^{10};3^{20}=\left(3^2\right)^{10}=9^{10}\\ Vì:8^{10}< 9^{10}\left(Vì:8< 9\right)\Rightarrow2^{30}< 3^{20}\\ b,9^{10}.27^5=\left(3^2\right)^{10}.\left(3^3\right)^5=3^{20}.3^{15}=3^{35}\\ 243^7=\left(3^5\right)^7=3^{35}\\ Vì:3^{35}=3^{35}\Rightarrow243^7=9^{10}.27^5\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Lời giải:
a)
$3^{2x+1}.7^y=9.21^x=3^2.(3.7)^x=3^{2+x}.7^x$
Vì $x,y$ là số tự nhiên nên suy ra $2x+1=2+x$ và $y=x$
$\Rightarrow x=y=1$
b) \(\frac{27^x}{3^{2x-y}}=\frac{3^{3x}}{3^{2x-y}}=3^{x+y}=243=3^5\Rightarrow x+y=5(1)\)
\(\frac{25^x}{5^{x+y}}=\frac{5^{2x}}{5^{x+y}}=5^{x-y}=125=5^3\Rightarrow x-y=3\) $(2)$
Từ $(1);(2)\Rightarrow x=4; y=1$
a/ \(27.3^x=243\)
\(\Leftrightarrow3^x=9\)
\(\Leftrightarrow3^x=3^2\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy ...
b/ \(\left(x-5\right)^3=15\)
\(\Leftrightarrow\left(x-5\right)^3=\sqrt[3]{15}^3\)
\(\Leftrightarrow x-5=\sqrt[3]{15}\)
\(\Leftrightarrow x=\sqrt[3]{15}+5\)