\(^x\) < 243

b) 2\(^x\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107.101107`

a)

\(27< 3^x< 243\\ \Rightarrow3^3< 3^x< 3^5\\ \Rightarrow3< x< 5\\ \Rightarrow x=4\)

Vậy, `x = 4`

b)

\(2^x+2^{x+1}+2^{x+2}=56?\\ \Rightarrow2^x+2^x\cdot2+2^x\cdot4=56\\ \Rightarrow2^x\cdot\left(1+2+4\right)=56\\ \Rightarrow2^x\cdot7=56\\ \Rightarrow2^x=8\\ \Rightarrow2^x=2^3\\ \Rightarrow x=3\)

Vậy, `x = 3`

c)

\(3^x+3^{x+2}=810\\ \Rightarrow3^x+3^x\cdot9=810\\ \Rightarrow3^x\cdot\left(1+9\right)=810\\ \Rightarrow3^x\cdot10=810\\ \Rightarrow3^x=81\\ \Rightarrow3^x=3^4\\ \Rightarrow x=4\)

Vậy, `x = 4.`

7 tháng 10 2023

a) \(27< 3^x< 243\)

\(\Rightarrow3^3< 3^x< 3^5\)

\(\Rightarrow3< x< 5\)

c) \(3^x+3^{x+2}=810\)

\(\Rightarrow3^x\left(1+3^2\right)=810\)

\(\Rightarrow3^x.10=810\)

\(\Rightarrow3^x=810:10\)

\(\Rightarrow3^x=81\)

\(\Rightarrow3^x=3^4\)

\(\Rightarrow x=4\)

12 tháng 10 2017

a) \(5.2^{x+1}.2^{-2}-2^x=384\Leftrightarrow2^x\left(5.2^{-2}.2-1\right)=384\)\(\Leftrightarrow2^x.1,5=384\Leftrightarrow2^x=384:1,5=256=2^8\)

\(\Rightarrow x=8\)

b) \(3^{x+2}.5^y=45^x\Leftrightarrow3^{x+2}.5^y=3^{2x}.5^x\Leftrightarrow\frac{3^{2x}}{3^{x+2}}=\frac{5^y}{5^x}\)\(\Leftrightarrow3^{2x-x+2}=5^{y-x}\Leftrightarrow3^{x+2}=5^{y-x}\)

\(\Rightarrow x+2=y-x=0\Rightarrow x=y=-2\)

21 tháng 9 2017

a, \(2^3< 2^x< 2^9.2^{-5}\)

\(2^3< 2^x< 2^4\)

cn lại mk ko bt, hình như đề hơi sai sai

26 tháng 7 2016

a,\(8< 2^x\le2^9.2^{-5}\)

\(2^3< 2^x\le2^4\)

\(\Rightarrow x=4\)

b, \(27< 81^3.3^x< 243\)

\(3^3< 3^{12-x}< 3^5\)

\(\Rightarrow3< 12-x< 5\)

12-x=4

x=8

c,\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)

\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)

\(\Rightarrow x>5\)

x=6;7;8........

25 tháng 9 2016

tìm x, biết:

(5x+1)^2=36/49

25 tháng 9 2018

a) ko có x ???

v) 27<813:3x>243

33<(34)3:3x>35

33<312:3x>35

33<312-x>35

=> 312-x=34

<=> 12-x=4 

=>x=8

25 tháng 9 2018

sửa lại cái dấu > thành < nha  bạn

6 tháng 9 2019

a) \(8< 2^x\le2^9.2^{-5}\)

\(\Leftrightarrow2^3< x\le2^{9-5}\)

\(\Leftrightarrow2^3< 2^x\le2^4\)

\(\Leftrightarrow3< x\le4\Leftrightarrow x=4\)

b) \(27< 81^3:3^x< 243\)

\(\Leftrightarrow3^2< \left(3^4\right)^3:3^x< 3^5\)

\(\Leftrightarrow3^2< 3^{12}:3^x< 3^5\)

\(\Leftrightarrow3^2< 3^{12-x}< 3^5\)

\(\Leftrightarrow2< 12-x< 5\)

\(\Leftrightarrow\hept{\begin{cases}x=8\\x=9\end{cases}}\)

a: \(\left|x\right|=3+\dfrac{1}{5}=\dfrac{16}{5}\)

mà x<0

nên x=-16/5

b: \(\left|x\right|=-2.1\)

nên \(x\in\varnothing\)

c: \(\left|x-3.5\right|=5\)

=>x-3,5=5 hoặc x-3,5=-5

=>x=8,5 hoặc x=-1,5

d: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)

=>|x+3/4|=1/2

=>x+3/4=1/2 hoặc x+3/4=-1/2

=>x=-1/4 hoặc x=-5/4

8 tháng 9 2020

a) \(32< 2^x< 128\)

=> \(2^5< 2^x< 2^7\)

=> x = 6

b) \(2^{x-1}+4\cdot2^x=9\cdot2^5\)

=> \(2^{x-1}+2^2\cdot2^x=9\cdot2^5\)

=> \(2^{x-1}+2^{2+x}=9\cdot2^5\)

=> 9.2x-1 = 9.25

=> 2x-1 = \(\frac{9\cdot2^5}{9}=2^5\)

=> x - 1 = 5 => x = 6

c) \(9\cdot27\le3^x\le243\)

=> \(243\le3^x\le243\)

=> x = 5

d) Giống câu b)

e) \(3^{x-1}+5\cdot3^{x-2}=216\)

=> 8.3x-2 = 216

=> 3x-2 = 27

=> 3x-2 = 33

=> x - 2 = 3 => x = 5

f) 27x-3 = 9x+3 

=> 27x-3 = 9x+3

=> (33)x-3 = (32)x+3

=> 33x-9 = 32x + 6

=> không thỏa mãn x vì x là phân số mà theo đề bài là số nguyên

g) x2019 = x => x2019 - x = 0 => x(x2018 - 1) = 0 => x = 0 hoặc x = 1

8 tháng 9 2020

a) 

\(2^5< 2^x< 2^7\) 

\(5< x< 7\) 

\(x=6\) 

b) 

\(2^{x-1}+2^2\cdot2^x=9\cdot2^5\) 

\(2^{x-1}+2^{2+x}=9\cdot2^5\) 

\(2^{x-1}\left(1+2^3\right)=9\cdot2^5\) 

\(2^{x-1}\cdot9=9\cdot2^5\) 

\(2^{x-1}=2^5\) 

\(x-1=5\) 

\(x=6\)

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này