cho tam giác ABC có góc A = 60 ,đường cao BH ,CK .chứng minh :
a) KH=BC.cos A.
b) M là trung điểm của BC .Chứng Minh : tam giác KMH đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA
=>BA^2=BH*BC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của HA
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của AH
=>IA=IH
Bạn tự vẽ hình nhé hình này rất dễ thôi :v
a)Xét tam giác cân ABC có:AM là trung tuyến
`=>` AM là đường cao
`=>AM bot BC`
Xét tam giác ABM và tam giác ACM có:
`AM` chung
`hat{AMB}=hat{AMC}=90^o(CMT)`
`BM=MC`(do m là trung điểm)
`=>Delta ABM=Delta ACM(cgc)`
`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:
`BM=CM`(M là trung điểm)
`hat{ABC}=hat{ACB}`(do tam giác ABC cân)
`=>Delta BHM=Delta CKM`(ch-gn)
`=>BH=CK`
a) Xét ΔAMB và ΔAMC có
AM chung
BM=CM(M là trung điểm của BC)
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACM(c-c-c)
a) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB và AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có
CB chung
\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)
b) Ta có: ΔBHC=ΔCKB(cmt)
nên HC=KB(hai cạnh tương ứng)
Ta có: AK+KB=AB(K nằm giữa A và B)
AH+HC=AC(H nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và KB=HC(cmt)
nên AK=AH
Xét ΔAKH có AK=AH(cmt)
nên ΔAKH cân tại A(Định nghĩa tam giác cân)
c) Ta có: ΔAKH cân tại A(cmt)
nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)
mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)
d) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)
hay \(\widehat{KBO}=\widehat{HCO}\)
Xét ΔKBO vuông tại K và ΔHCO vuông tại H có
KB=HC(cmt)
\(\widehat{KBO}=\widehat{HCO}\)(cmt)
Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)
nên OB=OC(hai cạnh tương ứng)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OB=OC(cmt)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)
Giải phần góc nhé:
Gọi I là giao điểm của CE và BD.
Dễ thấy \(\Delta BEI\sim\Delta CDI\)
\(\Rightarrow\frac{EI}{DI}=\frac{BI}{CI}\)
\(\Rightarrow\frac{EI}{BI}=\frac{DI}{CI}=sin30^o=\frac{1}{2}\)
Bên cạnh đó có: \(\widehat{EID}=\widehat{BIC}\)
\(\Rightarrow\Delta EID\sim\Delta BIC\)
\(\Rightarrow\frac{ED}{BC}=\frac{EI}{BI}=\frac{DI}{CI}=\frac{1}{2}\)
\(\Rightarrow ED=MB=MC\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\)tam giác BDM đều
Tam giác CEB vuông tại E có M là trung điểm cạnh huyền.
\(\Rightarrow ME=MB=MC\left(1\right)\)
Tam giác CDB vuông tại E có M là trung điểm cạnh huyền.
\(\Rightarrow MD=MB=MC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow MD=ME\left(3\right)\)
Tam giác AEC vuông tại E
\(\Rightarrow\widehat{ACE}=90^o-\widehat{CAE}=90^o-60^o=30^o\)
Dễ thấy tứ giác EDCB nội tiếp đường tròn tâm M.
\(\Rightarrow\widehat{EMD}=2\widehat{ECD}=2.30^o=60^o\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\Delta BDM\) đều.