Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phần góc nhé:
Gọi I là giao điểm của CE và BD.
Dễ thấy \(\Delta BEI\sim\Delta CDI\)
\(\Rightarrow\frac{EI}{DI}=\frac{BI}{CI}\)
\(\Rightarrow\frac{EI}{BI}=\frac{DI}{CI}=sin30^o=\frac{1}{2}\)
Bên cạnh đó có: \(\widehat{EID}=\widehat{BIC}\)
\(\Rightarrow\Delta EID\sim\Delta BIC\)
\(\Rightarrow\frac{ED}{BC}=\frac{EI}{BI}=\frac{DI}{CI}=\frac{1}{2}\)
\(\Rightarrow ED=MB=MC\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\)tam giác BDM đều
Tam giác CEB vuông tại E có M là trung điểm cạnh huyền.
\(\Rightarrow ME=MB=MC\left(1\right)\)
Tam giác CDB vuông tại E có M là trung điểm cạnh huyền.
\(\Rightarrow MD=MB=MC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow MD=ME\left(3\right)\)
Tam giác AEC vuông tại E
\(\Rightarrow\widehat{ACE}=90^o-\widehat{CAE}=90^o-60^o=30^o\)
Dễ thấy tứ giác EDCB nội tiếp đường tròn tâm M.
\(\Rightarrow\widehat{EMD}=2\widehat{ECD}=2.30^o=60^o\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\Delta BDM\) đều.
a) Ta có:
- Gọi M là trung điểm của AC.
- Vì I là trung điểm của BC nên IM // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Ta có BM = MC (vì M là trung điểm của AC).
- Vì IM // AH và BM = MC nên tam giác IMC và tam giác AHM là hai tam giác đồng dạng.
- Do đó, ta có: ∠IMC = ∠AHM.
- Nhưng ∠IMC = 90° (vì IM vuông góc với BC).
- Vậy, ta có: ∠AHM = 90°.
- Từ đó, ta suy ra AH vuông góc với BC.
b) Ta có:
- Gọi K là điểm đối xứng của H qua I.
- Vì I là trung điểm của BC nên IK // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Vì K là điểm đối xứng của H qua I nên HK = HI.
- Ta có: AH = 2IK (vì I là trung điểm của BC và K là điểm đối xứng của H qua I).
- Vì CK // BD (vì CK và BD đều vuông góc với BC và đi qua điểm H) nên tam giác CKD và tam giác BHD là hai tam giác đồng dạng.
- Do đó, ta có: CK/BD = DK/DH.
- Nhưng CK = BD (vì CK // BD) nên DK = DH.
- Vậy, ta có: DK = DH.
- Từ đó, ta suy ra tam giác ABK vuông.
c) Ta có:
- Gọi N là trung điểm của AB.
- Vì I là trung điểm của BC nên IN // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Ta có: AN = NB (vì N là trung điểm của AB).
- Vì IN // AH và AN = NB nên tam giác INB và tam giác AHM là hai tam giác đồng dạng.
- Do đó, ta có: ∠INB = ∠AHM.
- Nhưng ∠INB = 90° (vì IN vuông góc với AB).
- Vậy, ta có: ∠AHM = 90°.
- Từ đó, ta suy ra AH vuông góc với BM.
- Nhưng BM = MC (vì M là trung điểm của AC).
- Vậy, ta có: AH vuông góc với MC.
- Từ đó, ta suy ra tam giác BEA vuông.
d) Ta có:
- Gọi N là trung điểm của AB.
- Vì I là trung điểm của BC nên IN // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Ta có: AN = NB (vì N là trung điểm của AB).
- Vì IN // AH và AN = NB nên tam giác INB và tam giác AHM là hai tam giác đồng dạng.
- Do đó, ta có: ∠INB = ∠AHM.
- Nhưng ∠INB = 90° (vì IN vuông góc với AB).
- Vậy, ta có: ∠AHM = 90°.
- Từ đó, ta suy ra AH vuông góc với BM.
- Nhưng BM = MC (vì M là trung điểm của AC).
- Vậy, ta có: AH vuông góc với MC.
- Gọi D' là điểm đối xứng của D qua M.
- Ta có: MD' = MD (vì D' là điểm đối xứng của D qua M).
- Vì MD' vuông góc với BC và MD vuông góc với BC nên tam giác MBD' và tam giác MCD là hai tam giác vuông cân.
- Do đó, ta có: MB = MD' và MC = MD.
- Từ đó, ta suy ra MB.MC = MD.MD' = MD^2.
- Nhưng MD^2 = DC^2 - MC^2 (theo định lí Pythagoras).
- Vậy, ta có: MB.MC = DC^2 - MC^2.
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
a: Xét tứ giác AHIK có
\(\widehat{AHI}+\widehat{AKI}=90^0+90^0=180^0\)
=>AHIK là tứ giác nội tiếp
=>A,H,I,K cùng thuộc một đường tròn
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó ΔACD vuông tại C
=>AC\(\perp\)CD
Ta có: BH\(\perp\)AC
AC\(\perp\)CD
Do đó:BH//CD
c: Ta có: BH//CD
I\(\in\)BH
Do đó: BI//CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó; ΔABD vuông tại B
Ta có:BD\(\perp\)BA
CI\(\perp\)BA
Do đó:BD//CI
Xét tứ giác BICD có
BI//CD
BD//CI
Do đó: BICD là hình bình hành