Cho tam giác cân PQR , với PQ=PR. Lấy các điểm M,N tương ứng thuộc PQ, PR ssao cho PM = PN. Chứng minh rằng QMNR là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha!
Vì PQ=PR suy ra tg PQR cân tại P
suy ra : góc PQR=\(\frac{180-P}{2}\)(180 độ, góc P)(1)
Ta có PQ=PR và PM=PN(gt)
vì PM=PN suy ra tg PMN cân tại P
suy ra : góc PMN=\(\frac{180-P}{2}\)(2)
Từ (1),(2) ta có :góc PQR= góc PMN
mà 2 góc ở vị trí đồng vị suy ra MN // QR
suy ra QMNR là hình thang (3)
Vì PQ=PR và PM=PN
suy ra PQ-PM = PR-PN
suy ra MQ=NR(4)
TỪ (3) (4) suy ra QMNR là hình thang cân.
Sửa đề: MK\(\perp\)PQ; MN\(\perp\)PR
a: ta có: ΔPQR vuông tại P
=>\(QR^2=PQ^2+PR^2\)
=>\(QR^2=8^2+6^2=100\)
=>\(QR=\sqrt{100}=10\left(cm\right)\)
Ta có: ΔRPQ vuông tại P
mà PM là đường trung tuyến
nên \(PM=\dfrac{RQ}{2}=5\left(cm\right)\)
b: Xét tứ giác PNMK có
\(\widehat{PNM}=\widehat{PKM}=\widehat{NPK}=90^0\)
=>PNMK là hình chữ nhật
c: Xét ΔRPQ có
M là trung điểm của RQ
MK//RP
Do đó: K là trung điểm của PQ
=>PK=KQ(1)
Ta có: PKMN là hình chữ nhật
=>PK=MN(2)
Từ (1) và (2) suy ra KQ=MN
Ta có: PK//MN
K\(\in\)PQ
Do đó: NM//KQ
Xét tứ giác KQMN có
KQ//MN
KQ=MN
Do đó: KQMN là hình bình hành
=>QN cắt MK tại trung điểm của mỗi đường
mà O là trung điểm của MK
nên O là trung điểm của QN
=>OQ=ON
Xét tứ giác PMQH có
K là trung điểm chung của PQ và MN
=>PMQH là hình bình hành
Hình bình hành PMQH có PQ\(\perp\)MH
nên PMQH là hình thoi
a: Xét ΔPQE và ΔPRD có
PQ=PR
\(\widehat{QPE}\) chung
PE=PD
Do đó: ΔPQE=ΔPRD
b: Xét ΔMQR có \(\widehat{MQR}=\widehat{MRQ}\)
nên ΔMQR cân tại M
Ta có: $PQ=PM+MQ$\(\Rightarrow PM=PQ-MQ=8-6=2\left(cm\right)\)
Áp dụng định lý Thales trong tam giác PQR, có:
\(\frac{PM}{PQ}=\frac{PN}{PR}\Leftrightarrow PR=\frac{PN.PQ}{PM}=\frac{3.8}{2}=12\left(cm\right)\)
KL: .........................
a: Xét ΔPQR có
E là trung điểm của PQ
F là trung điểm của PR
DO đó: EF là đường trung bình
=>EF//QR và EF=QR/2
=>EF//QG và EF=QG
Xét tứ giác QEFR có EF//QR
nên QEFR là hình thang
b: EF=QR/2=16/2=8(cm)
c: Xét tứ giác EFGQ có
EF//GQ
EF=GQ
Do đó: EFGQ là hình bình hành
Ta có:
\(\Delta PQR\) cân tại P nên \(\widehat{PQR}=\widehat{QRQ}\) (1)
PM=PN \(\Rightarrow\)\(\Delta PMN\) cân tại P
\(\Rightarrow\widehat{PMN}=\widehat{PNM}\)
Mà \(\widehat{PMN}+\widehat{NMQ}=180^0\); \(\widehat{PNM}+\widehat{MNR}=180^0\)
\(\Rightarrow\widehat{NMQ}=\widehat{MNR}\) (2)
Từ (1) và (2) suy ra QMNR là hình thang cân