K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Hình tự vẽ nha!

Vì PQ=PR suy ra tg PQR cân tại P

suy ra : góc PQR=\(\frac{180-P}{2}\)(180 độ, góc P)(1)

Ta có PQ=PR và PM=PN(gt)

vì PM=PN suy ra tg PMN cân tại P

suy ra : góc PMN=\(\frac{180-P}{2}\)(2)

Từ (1),(2) ta có :góc  PQR= góc PMN

mà 2 góc ở vị trí đồng vị suy ra MN // QR

suy ra QMNR là hình thang (3)

Vì PQ=PR và PM=PN 

suy ra PQ-PM = PR-PN

suy ra MQ=NR(4)

TỪ (3) (4) suy ra QMNR là hình thang cân.

11 tháng 12 2023

Sửa đề: MK\(\perp\)PQ; MN\(\perp\)PR

a: ta có: ΔPQR vuông tại P

=>\(QR^2=PQ^2+PR^2\)

=>\(QR^2=8^2+6^2=100\)

=>\(QR=\sqrt{100}=10\left(cm\right)\)

Ta có: ΔRPQ vuông tại P

mà PM là đường trung tuyến

nên \(PM=\dfrac{RQ}{2}=5\left(cm\right)\)

b: Xét tứ giác PNMK có

\(\widehat{PNM}=\widehat{PKM}=\widehat{NPK}=90^0\)

=>PNMK là hình chữ nhật

c: Xét ΔRPQ có

M là trung điểm của RQ

MK//RP

Do đó: K là trung điểm của PQ

=>PK=KQ(1)

Ta có: PKMN là hình chữ nhật

=>PK=MN(2)

Từ (1) và (2) suy ra KQ=MN

Ta có: PK//MN
K\(\in\)PQ

Do đó: NM//KQ

Xét tứ giác KQMN có

KQ//MN

KQ=MN

Do đó: KQMN là hình bình hành

=>QN cắt MK tại trung điểm của mỗi đường

mà O là trung điểm của MK

nên O là trung điểm của QN

=>OQ=ON

Xét tứ giác PMQH có

K là trung điểm chung của PQ và MN

=>PMQH là hình bình hành

Hình bình hành PMQH có PQ\(\perp\)MH

nên PMQH là hình thoi

8 tháng 4 2020

P Q R M N

Ta có: $PQ=PM+MQ$\(\Rightarrow PM=PQ-MQ=8-6=2\left(cm\right)\)

Áp dụng định lý Thales trong tam giác PQR, có:

\(\frac{PM}{PQ}=\frac{PN}{PR}\Leftrightarrow PR=\frac{PN.PQ}{PM}=\frac{3.8}{2}=12\left(cm\right)\)

KL: .........................

a: Xét ΔPQR có 

E là trung điểm của PQ

F là trung điểm của PR

DO đó: EF là đường trung bình

=>EF//QR và EF=QR/2

=>EF//QG và EF=QG

Xét tứ giác QEFR có EF//QR

nên QEFR là hình thang

b: EF=QR/2=16/2=8(cm)

c: Xét tứ giác EFGQ có 

EF//GQ

EF=GQ

Do đó: EFGQ là hình bình hành

1 tháng 11 2023

loading... a) Do PQ = QA (gt)

⇒ Q là trung điểm của AP

Tứ giác PHAK có:

Q là trung điểm của AP (cmt)

Q là trung điểm của HK (gt)

⇒ PHAK là hình bình hành

b) Do PHAK là hình bình hành (cmt)

⇒ PK = AH

c) ∆HNK vuông tại N

Q là trung điểm của HK (gt)

⇒ NQ là đường trung tuyến ứng với cạnh huyền HK

⇒ NQ = HK : 2 (1)

∆HMK vuông tại M

Q là trung điểm HK (gt)

⇒ MQ là đường trung tuyến ứng với cạnh huyền HK

⇒ MQ = HK : 2 (2)

Từ (1) và (2) ⇒ MQ = NQ

∆MNQ có:

MQ = NQ (cmt)

⇒ ∆MNQ cân tại Q

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Câu 1:

1. Vì $P,Q$ lần lượt là trung điểm của $AB,AC$ nên $PQ$ là đường trung bình của tam giác $ABC$ ứng với $BC$

$\Rightarrow PQ=\frac{1}{BC}=MC$ và $PQ\parallel BC$ hay $PQ\parallel MC$

Tứ giác $PQCM$ có cặp cạnh đối $PQ$ và $MC$ vừa song song vừa bằng nhau nên $PQCM$ là hình bình hành.

2.Vì tam giác $ABC$ cân tại $A$ nên đường trung tuyến $AM$ đồng thời là đường cao. Hay $AM\perp BC$

Tứ giác $NAMB$ có 2 đường chéo $MN, AB$ cắt nhau tại trung điểm $P$ của mỗi đường nên $NAMB$ là hình bình hành. 

Hình bình hành $NAMB$ có 1 góc vuông ($\widehat{AMB}$) nên $NAMB$ là hình vuông.

$\Rightarrow NB\perp BM$ hay $NB\perp BC$ (đpcm)

3.

Vì $PQCM$ là hình bình hành nên $PM\parallel QC; PM=QC$. Mà $P,M,N$ thẳng hàng; $PM=PN$ nên $PN\parallel QC$ và $PN=QC$

Tứ giác $PNQC$ có cặp cạnh đối $PN, QC$ song song và bằng nhau nên $PNQC$ là hình bình hành. 

Do đó $PC\parallel QN(1)$

Mà $PC\parallel QF$ (2)

Từ $(1);(2)\Rightarrow Q,N,F$ thẳng hàng (đpcm)

31 tháng 12 2020

Chị ơi  NB vuông góc với Bc nữa ạ

19 tháng 10 2023
a) Ta có MN // BC và M là trung điểm của AB, suy ra MN cắt AC tại N và MN cắt BP tại D (do N là trung điểm của PD). Vì MN // BC nên ta có: ∠MNB = ∠BCN (cùng chắn MN) ∠MNB = ∠CBN (vì tam giác ABC cân tại A) Do đó, ∠BCN = ∠CBN, tức là tam giác BCN cân tại B. Vì MN // BC nên ta cũng có: ∠MND = ∠BCP (cùng chắn MN) ∠MND = ∠CBP (vì tam giác ABC cân tại A) Do đó, ∠BCP = ∠CBP, tức là tam giác BCP cân tại B. Vậy tứ giác BCNM là hình thang cân
tham khảo nha bạn :))
19 tháng 10 2023

b) Ta đã chứng minh được tứ giác BCNM là hình thang cân, suy ra N là trung điểm của đáy BC.

câu b nha