CHO \(a+b\ge0\). CMR với mọi số nguyên dương n ta luôn có BĐT sau:(bằng PP quy nạp) \(\dfrac{a^n+b^n}{2}\ge\left(\dfrac{a+b}{2}\right)^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nice proof, nhưng đã quy đồng là phải thế này :v
\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)
Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:
\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)
Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)
Áp dụng BĐT này ta có:
\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)
\(\left[...\right]=\left[n+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)\right]=\left[n+1-\frac{1}{n+1}\right]=\left[n+\frac{n}{n+1}\right]\)
Do n dương nên \(\frac{n}{n+1}< 1\)\(\Rightarrow\)\(\left[n+\frac{n}{n+1}\right]=n\)
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
a ) 10n + 72n - 1 chia hết cho 81
+ ) n = 0 => 100 + 72 . 0 - 1 = 0
+ ) Giả sử đúng đến n = k tức là :
( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1
Tức là : 10k + 1 + 72 x k + 71
=> 10 . 10k + 72k + 71
=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)- \(\frac{648k+27}{chiahetcho81}\)
=> đpcm
Câu b và c làm tương tự
Đặt B= 10n+72n-1
B = 10ⁿ + 72n - 1
= 10ⁿ - 1 + 72n
Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)
= 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n
=> A : 9 = 11..1 + 8n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
= 11...1 -n + 9n
=> A : 9 = chia hết cho 9
=> A chia hết cho 81
a) Đặt cái cần chứng minh là (*)
+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng
+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81
Thật vậy:
10k + 1 + 72(k + 1) - 1
= 10k.10 + 72k + 72 - 1
= 10k + 72k + 9.10k + 72 - 1
= (10k + 72k - 1) + 9.10k + 72
đến đây tui ... chịu :))
Đề bắt quy nạp khó quá, giá đề mở thì xài Ber's ineq cho lẹ .-.
*) Với \(n=1;2\) BĐT đúng
*)Giả sử BĐT đúng với \(n=k\) tức chứng minh BĐT đúng với \(n=k+1\) hay \(\dfrac{a^{k+1}+b^{k+1}}{2}\ge\left(\dfrac{a+b}{2}\right)^{k+1}\)
Ta có: \(VT-VP=\dfrac{a^{k+1}+b^{k+1}}{2}-\left(\dfrac{a+b}{2}\right)^{k+1}\)
\(=\dfrac{a^{k+1}+b^{k+1}}{2}-\left(\dfrac{a+b}{2}\right)^k\left(\dfrac{a+b}{2}\right)\)
\(\ge\dfrac{a^{k+1}+b^{k+1}}{2}-\dfrac{a^k+b^k}{2}\cdot\dfrac{a+b}{2}\)
\(=\dfrac{\left(a-b\right)\left(a^k-b^k\right)}{4}=\dfrac{\left(a-b\right)\left(a^{k-1}-a^{k-2}b+...+b^{k-1}\right)}{4}\ge0\)
Khi \(a=b\)