K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

Đề bắt quy nạp khó quá, giá đề mở thì xài Ber's ineq cho lẹ .-.

*) Với \(n=1;2\) BĐT đúng

*)Giả sử BĐT đúng với \(n=k\) tức chứng minh BĐT đúng với \(n=k+1\) hay \(\dfrac{a^{k+1}+b^{k+1}}{2}\ge\left(\dfrac{a+b}{2}\right)^{k+1}\)

Ta có: \(VT-VP=\dfrac{a^{k+1}+b^{k+1}}{2}-\left(\dfrac{a+b}{2}\right)^{k+1}\)

\(=\dfrac{a^{k+1}+b^{k+1}}{2}-\left(\dfrac{a+b}{2}\right)^k\left(\dfrac{a+b}{2}\right)\)

\(\ge\dfrac{a^{k+1}+b^{k+1}}{2}-\dfrac{a^k+b^k}{2}\cdot\dfrac{a+b}{2}\)

\(=\dfrac{\left(a-b\right)\left(a^k-b^k\right)}{4}=\dfrac{\left(a-b\right)\left(a^{k-1}-a^{k-2}b+...+b^{k-1}\right)}{4}\ge0\)

Khi \(a=b\)

Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR 2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\) Giải: Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy...
Đọc tiếp

Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR

2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)

Giải:

Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy sau:

\(\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\ge0\),

\(\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\),

\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge0\)

Các bđt trên đầu mang tính đối xứng giữa các biến nên k mất tính tổng quát ta có thể giả sử \(a\ge b\ge c\)

=> \(\dfrac{a^2-1}{a}\ge\dfrac{b^2-1}{b}\ge\dfrac{c^2-1}{c}\)

\(\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{c^2}}}\)

Áp dụng bđt Chebyshev có:

\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge\dfrac{1}{3}\left(\sum\dfrac{a^2-1}{a}\right)\left(\sum\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\right)\)

Theo gia thiết lại có: \(\sum\dfrac{a^2-1}{a}=\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)

nên ta có thể suy ra \(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge0\)

Vì vậy bđt đã cho ban đầu cũng đúng.

@Ace Legona

2
2 tháng 8 2017

Nice proof, nhưng đã quy đồng là phải thế này :v

\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)

\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)

2 tháng 8 2017

Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:

\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)

Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)

Áp dụng BĐT này ta có:

\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)

6 tháng 5 2022

Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)

\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)

Cộng vế theo vế:

\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

6 tháng 5 2022

Mà câu này làm được rồi, giúp được câu kia không

21 tháng 11 2018

ta có \(\dfrac{1}{\left(a+b\right)c}\le\dfrac{1}{2\sqrt{ab}c}=\dfrac{1}{2\sqrt{c}}\)tương tự ta có

\(\Sigma\dfrac{1}{\left(a+b\right)c}\le\Sigma\dfrac{1}{2\sqrt{c}}=\dfrac{\Sigma\sqrt{ab}}{2}\le\dfrac{\Sigma a}{2}\)(đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Đây là BĐT Iran 96 khá nổi tiếng. Bạn hoàn toàn có thể search trên google lời giải.

17 tháng 2 2021

Nó nổi tiếng mà sao e lại ko biết hiha

8 tháng 9 2019

Đây nhá:)Sửa đề:

Chứng minh rằng \(\Sigma S_a\left(b-c\right)^2\ge S\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Nếu \(s_a+S_b\ge0;S_b+S_c\ge0;2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}+2S_b-S\left(c-a\right)\ge0\)

Xét TH \(a\ge b\ge c\) thì bđt đề bài hiển nhiên đúng nên ta chỉ xét:

\(a\le b\le c\) khi đó \(\left(a-b\right)\left(b-c\right)\ge0\) (1)

Ta có: \(S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\)

\(=\left(S_a+S_b\right)\left(b-c\right)^2+\left(S_c+S_b\right)\left(a-b\right)^2+2S_b\left(a-b\right)\left(b-c\right)\)

\(\ge2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}\left(a-b\right)\left(b-c\right)+2S_b\left(b-c\right)\left(a-b\right)\)

(CÔ si)

Như vậy, BĐT đề bài sẽ được chứng minh nếu:

\(2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}\left(a-b\right)\left(b-c\right)+2S_b\left(b-c\right)\left(a-b\right)\ge S\left(a-b\right)\left(b-c\right)\left(c-a\right)\)\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}+2S_b-S\left(c-a\right)\right)\ge0\)

Và điều này luôn đúng theo (1) và giả thiết đề bài.

8 tháng 9 2019

\(S_a\left(b-c\right)^2\) là gì vậy, cái này em chưa học. Giải thích đi để em xem thế nào...

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

26 tháng 5 2018

Từ \(a^2+b^2+c^2=3\Rightarrow a+b+c\le3\)

Ta có: \(\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\)

\(\ge\sqrt{9\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\)

\(\ge\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)

Cần chứng minh \(\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\ge\dfrac{3\sqrt{13}}{2}\)

\(\Leftrightarrow9\left(\dfrac{9}{2t}\right)^2+t^2\ge\dfrac{117}{4}\left(t=a+b+c\le3\right)\)

\(\Leftrightarrow\dfrac{\left(t-3\right)\left(2t-9\right)\left(t+3\right)\left(2t+9\right)}{4t^2}\ge0\)*Đúng*

9 tháng 6 2018

B1:a)ĐK: \(x\ne 0;4;9\)

b)\(P=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\dfrac{1}{\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1+1}{\sqrt{x}+1}\right)\)

\(=\dfrac{x-9-x+4+x^{\dfrac{1}{2}}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x^{\dfrac{1}{2}}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+1}{x^{\dfrac{1}{2}}}\)

\(=\dfrac{1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{x^{\dfrac{1}{2}}}\)\(=\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}\)

c)Vì \(x^{\dfrac{1}{2}}+1>0\forall x\) nên

\(P< 0< =>x-2x^{\dfrac{1}{2}}< 0\)

\(\Leftrightarrow x^{\dfrac{1}{2}}\left(x^{\dfrac{1}{2}}-2\right)< 0\)

\(\Leftrightarrow0< x< 4\)

Vậy 0<x<4 thì P<0

d)tA CÓ: \(\dfrac{1}{P}=\dfrac{x-2x^{\dfrac{1}{2}}}{x^{\dfrac{1}{2}}+1}=\dfrac{x-2x^{\dfrac{1}{2}}+1-1}{x^{\dfrac{1}{2}}+1}=\dfrac{\left(x^{\dfrac{1}{2}}-1\right)^2-1}{x^{\dfrac{1}{2}}+1}\ge-1\)

"=" khi x=1

B2:

a)\(A=x^2-2xy+y^2+4x-4y-5\)

\(=\left(x-y\right)^2+4\left(x-y\right)-5\)

\(=\left(x-y\right)^2-1+4\left(x-y\right)-4\)

\(=\left(x-y+1\right)\left(x-y-1\right)+4\left(x-y-1\right)\)

\(=\left(x-y+5\right)\left(x-y-1\right)\)

b)\(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^3+x^2\right)+2\left(x^2+x\right)+1\)

\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(=\left(x^2+x+1\right)^2\ge0\forall x\)

Vậy MinP=0

c)\(Q=x^6+2x^5+2x^4+2x^3+2x^2+2x+1\)

\(=\left(x^2+x-1\right)\left(x^4+x^3+2x^2+x+3\right)+4\)

\(=\left(1-1\right)\left(x^4+x^3+2x^2+x+3\right)+4\)

\(=0\left(x^4+x^3+2x^2+x+3\right)+4=4\)

Vậy x^2+x=1 thì Q=4

B3:a)\(2xy+x+y=83\)

\(\Leftrightarrow x\left(2y+1\right)+\dfrac{1}{2}\left(2y+1\right)=\dfrac{167}{2}\)

\(\Leftrightarrow2x\left(2y+1\right)+1\left(2y+1\right)=167\)

\(\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=167\)

\(Ư\left(167\right)=\left\{\pm1;\pm167\right\}\)

\(\Leftrightarrow\left(x;y\right)=\left(-84;-1\right);\left(-1;-84\right);\left(0;83\right);\left(83;0\right)\)

Vậy...

b)\(y^2+2xy-3x-2=0\)

\(\Leftrightarrow x^2+y^2+2xy-x^2-3x-2=0\)

\(\Leftrightarrow\left(x+y\right)^2=x^2+3x+2\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

\(x;y\in Z\) nên VT là số chính phương VP là tích 2 số nguyên liên tiếp

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)

Vậy...

B5:\(B=\dfrac{x^2+x+1}{x^2-x+1}\)

\(\Leftrightarrow x^2\left(B-1\right)+x\left(-B-1\right)+\left(B-1\right)=0\)

\(\Delta=\left(-B-1\right)^2-4\left(B-1\right)\left(B-1\right)\)

\(=-\left(B-3\right)\left(3B-1\right)\)

pt có nghiệm khi \(\Delta\ge0\)

\(\Leftrightarrow\left(B-3\right)\left(3B-1\right)\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}B-3\le0\\3B-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}B\le3\\B\ge\dfrac{1}{3}\end{matrix}\right.\)

Min B=1/3 khi x=-1; Max B=3 khi x=1