K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

`C=-2x^2+x+1`

`C=-2(x^2-x/2)+1`

`C=-2(x^2-2*x*1/4+1/16)+1+1/8`

`C=-2(x-1/4)^2+9/8<=9/8`

Dấu "=" `<=>x=1/4.`

Ta có: \(C=-2x^2+x+1\)

\(=-2\left(x^2-2\cdot x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\right)\)

\(=-2\left(x-\dfrac{1}{4}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)

31 tháng 8 2021

\(2x\left(x-3\right)=x^2-3x\)

\(\Rightarrow2x\left(x-3\right)=x\left(x-3\right)\)

\(\Rightarrow2x=x\)

\(\Rightarrow x=0\)

31 tháng 8 2021

\(2x.\left(x-3\right)=x^2-3x\)

\(\left(x-3\right)=x^2-3x:2x\)

 

 

 

 

 

19 tháng 3 2022

(x+2)2 +x(x-1)<2x2+1
x2+4x+4+x2-x<2x2+1
3x+4<1
x< -1


 

11 tháng 4 2021

Để Q(x) có nghiệm thì Q(x) = 0

Hay: \(2x^2-3x+1=0\)

\(\Rightarrow2x^2-2x-x+1=0\)

\(\Rightarrow2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

11 tháng 4 2021

`2x^2-3x+1=0`

`<=>2x^2-x-2x+1=0`

`<=>x(2x-1)-(2x-1)=0`

`<=>(2x-1)(x-1)=0`

`<=>x=1\or\x=1/2`

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)}{2\left(x-2\right)\left(x^2+4\right)}+\dfrac{4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\dfrac{x^3-x^2-2x^2+4x+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\dfrac{x^3+x^2+4x}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+x+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{\left(x^2+x+4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)

15 tháng 3 2021

Cảm ơn anh. Nhưng anh rút gọn sai rồi với lại em đang cần câu b ạ.

2 tháng 11 2023

Áp dụng công thức là ra😎

\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

11 tháng 2 2022

Bạn làm như thế này là sai rồi nhé bạn dùng HDT số 3 rồi xét các ước của pt=> nghiệm nha

22 tháng 12 2022

B = | 2x -10| + (5-x)2 + 23

|2x-10| = 2.|x-5| \(\ge\) 0 ; (5-x)2\(\ge\) 0 \(\Rightarrow\) |2x-10| + (5-x)2 + 23 \(\ge\) 23

B(min) = 23 dấu bằng xảy ra khi :

\(\left\{{}\begin{matrix}|x-5|=0\\5-x=0\end{matrix}\right.\)

\(\Rightarrow\) x = 5 

kết luận B(min) = 23 xảy ra khi x = 5