A d C B D
Hình bên cho biết: góc BAC + góc ACD = 1800
Chứng minh: d vuông góc với CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BAD + ADC = 1800
mà 2 góc này ở vị trí trong cùng phía
=> AB // CD
mà AB _I_ BC
=> CD _I_ BC
AB // CD
=> BAC = ACD (2 góc so le trong)
mà ACD = 400
=> BAC = 400
BAD + ADC = 1800
1200 + ADC = 1800
ADC = 1800 - 1200
ADC = 600
cho mik hỏi câu b ở đâu
hôm sau yêu cầu giải có tâm tí viết a b c đi chứ thé này khó nhìn lắm
B1:Tính góc CAD = 30' ; => CD=1/2 AD(nửa tam giác đều);Chứng minh ABCD là hình thang cân
B2:Tính tất cả các góc của tam giác ABC =>ABC cân tại B =>AB=BC<=>AB=BC=CD=1/2 AD
B3:Lập 1 bài toán: cho AB=BC=CD=1/2 AD = x ;Tính ra AD = 8cm
AD là 8cm nha bạn
Chúc bạn học giỏi.
Cách giải mình sẽ up sau;
Lười đánh máy :v
a: góc AEB=(sd cung BC+sđ cung DM)/2
=1/2(sđ cung BC+sđ cung CM)
=1/2*sđ cung BM
=góc ABM
=góc ABE
=>ΔABE cân tại A
mà AH là phân giác
nen AH vuông góc với BE
b: Xét ΔMDE và ΔMBD có
góc MDE=góc MBD
góc DME chung
=>ΔMDE đồng dạng với ΔMBD
=>MD/MB=ME/MD
=>MD^2=MB*ME
a) Xét tam giác \(ADC\)vuông tại \(D\):
\(tan\widehat{ACD}=\frac{AD}{DC}=\frac{1}{2}\Rightarrow\widehat{ACD}=arctan\frac{1}{2}\)
b) Xét tam giác \(ADC\)vuông tại \(D\):
\(AC^2=AD^2+DC^2=AD^2+4AD^2=5AD^2\)
\(\Leftrightarrow AD=\sqrt{\frac{AC^2}{5}}=\sqrt{\frac{25^2}{5}}=5\sqrt{5}\left(cm\right)\)
\(AB=AD=5\sqrt{5}\left(cm\right),CD=2AD=10\sqrt{5}\left(cm\right)\).
c) Xét tam giác \(ADC\)vuông tại \(D\):
\(DH=\frac{AD.DC}{AC}=\frac{10\sqrt{5}.5\sqrt{5}}{25}=10\left(cm\right)\)
\(AH=\frac{AD^2}{AC}=\frac{AB^2}{AC}\Leftrightarrow\frac{AB}{AC}=\frac{AH}{AB}\)
Xét tam giác \(ABH\)và tam giác \(ACB\):
\(\widehat{A}\)chung
\(\frac{AB}{AC}=\frac{AH}{AB}\)
suy ra \(\Delta ABH~\Delta ACB\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{ACB}\)
Góc BAC + ACD = 180o Mà góc BAC; ACD là hai góc ở vị trí trong cùng phía
=> CD // AB
MÀ d | AB nên d | CD
vi d vuong goc voi AB
AB song song voi CD
=>d vuong goc voi CD