K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

\(\left\{{}\begin{matrix}a+b+c>0\left(1\right)\\ab+bc+ac>0\left(2\right)\\abc>0\left(3\right)\end{matrix}\right.\)

Giả sử trong ba số a,b,c có một số âm hay bằng o . Giả sử số đó là a.

Khi đó : (1) ==> b + c > -a \(\ge\) 0 ==> a(b+c) \(\le0\)

Do đó : (2) ==> bc + a(b+c) > 0 ==> bc > -a ( b+c) \(\ge\) 0 . Mà a < 0 ==> abc < 0 (vô lí vì abc >0 do (3))

Vậy cả ba số a , b ,c đều dương

1 tháng 5 2019
https://i.imgur.com/QWNY33W.jpg
AH
Akai Haruma
Giáo viên
13 tháng 6 2018

Lời giải:

Với $a=0$ thì pt trở thành: \(bx+c=0\)

\((c+a)^2< ab+bc-2ac\Leftrightarrow c^2< bc\Rightarrow c(c-b)< 0\Rightarrow 0< c< b\)

PT luôn có nghiệm \(x=\frac{-c}{b}\)

Với $a\neq 0$

Nếu \(ac<0\Rightarrow b^2-ac>0\Leftrightarrow \Delta>0\) nên pt \(ax^2+bx+c=0\) có nghiệm

Nếu \(ac>0, c>0\Rightarrow a>0\)

Ta có: \((c+a)^2< ab+bc-2ac< ab+bc\) do \(ac>0\)

\(\Leftrightarrow (c+a)^2< b(a+c)\)

\(a>0, c>0\Rightarrow a+c>0\), chia 2 vế cho $a+c$ thu được:

\(0< c+a< b\Rightarrow \Delta'=b^2-4ac>(c+a)^2-4ac=(a-c)^2\geq 0\)

Do đó pt \(ax^2+bx+c=0\) có nghiệm

24 tháng 12 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

Giả sử a <0

Vì abc>0 nên bc <0

Có ab+bc+ca>0

<=>a(b+c)>-bc

Vì bc<0=>-bc>0

=>a(b+c)>0

Mà a<0 nên b+c<0

=> a+b+c<0

Mà theo đề a+b+c>0

=> điều giả sử sai

=> điều pk chứng minh

16 tháng 7 2022

Giả sử ba số abc không đồng thời là các số dương thì có ít nhất một số không dương.

Không mất tính tổng quát, ta giả sử a ≤ 0 

loading... Nếu a = 0 thì abc = 0 (mâu thuẫn với giả thiết abc>0

loading... Nếu a < 0 thì từ abc > 0 \Rightarrow bc < 0.

Ta có ab + bc + ca > 0 \Leftrightarrow a(b + c) > -bc \Rightarrow a(b+c) > 0 \Rightarrow b + c < 0 \Rightarrow a + b + c < 0 (mâu thuẫn với giả thiết)

Vậy cả ba số ab và c đều dương.

25 tháng 11 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

Ta có: \(\sqrt{a+bc}=\sqrt{\dfrac{a^2+abc}{a}}=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a}}\)

thiết lập tương tự ,bất đẳng thức cần chứng minh tương đương:

\(\Leftrightarrow\sum\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a}}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(\Leftrightarrow\sum\sqrt{bc\left(a+b\right)\left(a+c\right)}\ge abc+\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\Leftrightarrow\sum\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge abc+\sum a\sqrt{bc}\)

Điều này luôn đúng theo BĐT Bunyakovsky:

\(\sum\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge\sum\left(bc+a\sqrt{bc}\right)=abc+\sum a\sqrt{bc}\)

Dấu = xảy ra khi a=b=c=3

28 tháng 4 2017

Đặt \(THANG=ab\left(a+1\right)+bc\left(b+1\right)+ca\left(c+1\right)\) :v

\(0\le a;b;c\le1\)\(\Rightarrow\left\{{}\begin{matrix}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow THANG\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)

\(a+b+c\ge2\) nên \(a+b+c-1\ge1\). Vậy \(THANG\ge2\cdot1=2\)

Đẳng thức xảy ra khi trong 3 số \(a;b;c\) có 2 số bằng 1 và một số bằng 0

29 tháng 4 2017

hi còn cách làm khác ko thắng cho mik xin lun :v

28 tháng 10 2018

đề sai rồi.vd:5,-1,-2

5 tháng 1 2021

3: Ta có \(\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}-1\).

Do đó \(\dfrac{1}{u_{100}}=\dfrac{1}{u_{99}}-1=\dfrac{1}{u_{98}}-2=...=\dfrac{1}{u_1}-99=\dfrac{1}{-2}-99=\dfrac{-199}{2}\Rightarrow u_{100}=\dfrac{-2}{199}\).